期刊文献+

一种新的轨迹聚类及有效性评价方法 被引量:1

A New Method of Trajectory Clustering and Validity Evaluation
下载PDF
导出
摘要 为解决轨迹聚类问题,提出一种新的无监督轨迹聚类及聚类有效性评估方法。通过建立双层字符串轨迹模型,计算得到轨迹间距离并用作聚类依据。提出轨迹同距点比例的概念,以此作为聚类工具,并采用类内平均同距点比例作为聚类有效性评价值。利用麻省理工大学(Massachusetts Institute of Technology,MIT)停车场行人路径数据集进行实验,实验结果表明,新的无监督聚类算法能较好地完成轨迹聚类任务,平均类内同距点比例能够很好地衡量分类效果。 In order to solve the problem of trajectory clustering, this paper proposes a new method of unsupervised trajectory clustering and validity evaluation. The clustering is based on the distance matrix calculated in the double-layer alphabetic string model. The paper also proposes the conception of PSD (Points With Same Distance) and regard it as the tool of trajectory clustering. The average proportion of PSD intra-clusters is used to evaluate the validity of the clustering. We test the method making use of the MIT (Massachusetts Institute of Technology ) parkinglot dataset. As the experiment shows, our unsupervised method can successfully accomplish the task of trajectory clustering and the proposed method of validity evaluation can express the validity of trajectory clustering.
出处 《系统仿真技术》 2012年第4期305-309,共5页 System Simulation Technology
关键词 字符串模型 轨迹聚类 聚类有效性 同距点比例 alphabetic string model trajectories clustering clustering validity proportion of pointswith same distance
  • 相关文献

参考文献7

  • 1WU Si-tao,CHOW TWS. Clustering of the self-organizingmap using a clustering validity index based on inter-cluster and intra-cluster density [ J]. PatternRecognition,2004,37(2) :175 -188.
  • 2Piciarelli C, Foresti G L. Online trajectory clustering foranomalous events detection [ J]. Pattern RecognitionLetters,2006,27:1835 - 1842.
  • 3Basharat A, Gritai A, Shah M. Learning object motionpatterns for anomaly detection and improved objectdetection [ C] // Proc. of IEEE Int , 1 Conference onComputer Vision and Pattern Recognition. [ s. 1.].IEEE ,2008:1 -8.
  • 4Piciarelli C, Micheloni C. Trajectory-based anomalousevent detection [ J]. IEEE Transactions on Circuits andSystems for Video Technology,2008,18(11) :1544 - 1554.
  • 5Wang X,Teck K,Ng G W,et al. Trajectory analysis andsemantic region modeling using a nonparametric Bayesianmodel[R]. [s. 1.] :CVPR,2008:1 -8.
  • 6Kang H Y, Kim J S, Li K J. Similarity measures fortrajectory of moving objects in cellular space [ J]. Paperpresented at the SAC 09 Proceedings of the 2009 ACMsymposium on Applied Computing. [ s. 1.] : SAC, 2007 :1325 -1330.
  • 7孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072

二级参考文献1

共引文献1071

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部