期刊文献+

基于特征函数和矩阵代数的卷积直扩信号分离 被引量:2

Convolutive Blind Separation of DSSS Based on Characteristic Function and Matrix-* algebraic
下载PDF
导出
摘要 针对多个直接序列扩频信号在多径信道传输后的卷积盲分离问题,提出了一个基于特征函数和矩阵代数的卷积盲分离方法。首先利用多传感器的条件,构建生成信号模型,且证明此模型符合独立子空间分析的基本条件;接着通过引入独立子空间分析的定义,证明直扩信号源的特征函数的Hessian矩阵满足块对角化性质;然后利用矩阵代数中矩阵分解的方法,将多个矩阵的联合块对角化问题转化为求取某个矩阵代数的可交换代数的一般性矩阵问题。当这个一般性矩阵被对角化时,卷积盲分离问题求解简化为求取一组齐次线性方程组的一个随机解。理论分析还表明,当噪声信号为高斯白噪声且具有相同的能量时,算法对于噪声具有非常强的鲁棒性。最后通过计算机仿真和与现有算法的比较,验证了新算法的有效性和可靠性,且具有更好的分离性能和相对更少的约束条件。新算法的不足之处是所需传感器数目较多,但在大规模传感器条件下能满足要求。 A method based on characteristic function and matrxi-* algebraic is proposed to solve the convolutive blind separation of Direct sequence spread spectrum signals through the multi-path channels.First,the signals model under the condition of multiple sensors is built and proved to be consistent with the basis of the Independent subspace analysis.Then the concept of independent subspace analysis is introduced,also the Hessian of Characteristic functions of the DSSS signals are proved to be block diagonal.Finally the matrix decomposition theory of matrix-* algebraic is used to transform the joint block diagonalization of multiple matries into the problem of finding a generic matrix of the commutant algebra,which is correspond to the matrix-* algebraic formed by the Hessian of Characteristic functions of the observed signals.And the diagonalization of the generic matrix is proved to be equivalent with the Joint block diagnolization of some matrix-* algebraic.Then the original problem comes down to finding a random solution of a homogeneous linear equations.The theory analyze implies that the proposed algorithm is very robust if the sensor noise is gaussian and shares the same variance,whenever the noise is white or color.Computer simulation shows the validity and reliability of the algorithm in the condition of three DSSS signals.The result also demonstrates that the proposed algorithm has better performance and less constraints comparing with the exsiting algorithms.The only disadvantage is that there should be more sensors,but in the large sensor network,it can be easily satified.
作者 汤辉 王殊
出处 《信号处理》 CSCD 北大核心 2012年第10期1483-1492,共10页 Journal of Signal Processing
关键词 直接序列扩频信号 多径信道 联合分块对角化 特征函数 矩阵代数 Direct sequence spread spectrum(DSSS) signals Mulitpath channel Joint Block Diagnonal Characteristic function Matrix-* algebraic function Matrix* algebraic
  • 相关文献

参考文献16

  • 1R. Pickhohz, D. Schilling, and L. Milstein, Theory of spread spectrum communications-A tutorial [ J ]. IEEE Trans. Commun, May 1982:855- 84.
  • 2Polydoros. A, Holmes, Jack K, Autocorrelation Tech- niques for Wideband detection of FH/DS Waveforms in Random Tone Interfrence [ J ]. Proceedings-IEEE Militar- y Communications Conference, 1983,3 : 781 - 785.
  • 3M. Castella, P. Bianchi, A. Chevreuil, J.-C. Prequet, A Blind source separation framework for detecting CPM sources mixed by a convolutive MIMO filter, Signal Pro- cessing 86(2006) : 1950-1967.
  • 4M. Castella, J. -C. Prequet, A. P. Petropulu, A family of frequency-and time-domain contrasts for blind separa- tion of convolutive mixtures of temporally dependent signals, IEEE Transactions on Signal Processing 53 ( 2005 ) : 107-120.
  • 5P. Jallon,A. Chevreuil, P. Loubaton, P. Chevalier, Sepa- ration of convolutive mixtures of cyclostationary sources: A contrast function based approach, in: Proc. ICA, Gre- nade (Spain) , 2004.
  • 6V. V. Veeravalli, A. Mantravadi. The coding-spreading trade-off in CDMA systems[J]. IEEE J. Sel. Areas Com- mun ,2002,5:396-408.
  • 7Hyvarinen A. A unifying model for blind separation of in- dependent sources [ J ]. Signal Processing, 2005,85 ( 7 ) : 1419-1427.
  • 8Hyvarinen A. Fast and robust fixed point algorithm for in- dependent component analysis[ J]. IEEE Trans. On Neu- ral Networks, 1999,10 (3) :626- 634.
  • 9Theis F. Uniqueness of complex and multidimensional in- dependent component analysis [ J ]. Signal Processing, 2004,84(5) :951-956.
  • 10Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[ M]. New York:Wiley,2001.

二级参考文献15

  • 1Cardoso J. F, Souloumiac A. Jacobi angles for simultaneous diagonalization [ J ]. SIAM J. Matrix Analysis and Application, 1996,17 ( 1 ) : 161-164.
  • 2Fevotte C, Theis F J. Orthonormal approximate joint blockdiagonalization[ T]. Technical Report GET/T616com Paris, 2007:14-16.
  • 3Cardoso J F, Souloumiac A. Blind beaming for non-gaussian signals [ C ]. IEE Proc. -F, 1993,140 (6) : 362-370.
  • 4Belouchrani A, Abed-Meraim K, Cardoso J F, Motdines E. A blind source separation technique using second-order statistics [ J ]. IEEE Transction on signal processing, 1997,45(2) : 434-444.
  • 5Haykin S. Unsupervised Adaptive Filtering, vol I: Blind source separation [ M ]. New York, 2000 : 64- 65.
  • 6Bousbia-Salah H, Belouchrani A, Abed-Meraim K. Blind separation of convolutive mixtures using joint block diagonalization[ C ]. ISSPA' 2001, Kuala Lumpur, Malaysia. 2001 : 13-16.
  • 7Moreau E. A generalization of joint-diagonalization criteria for source separation[ J]. IEEE Transactions on signal processing. 2001,49 ( 3 ) :530-541.
  • 8Ghennioui H, Fadili E. M, Thirion-Moreau N, Adib A and Moreau E. A Nonunitary Joint Block Diagonalization Algorithm for Blind Separation of Convolutive Mixtures of Sources [ J]. IEEE Signal Processing Letters, 2007, 14 (11) ,860- 863.
  • 9Fuxiang Wang, Zhongkan Liu, Jun Zhang. Nonorthogonal Joint Diagonalization Algorithm Based on Trigonometric Parameterization [ J ]. IEEE Transctions on Signal Processing. 2007, 55(11) :5299-5308.
  • 10Cardoso J F, Multidimensional Independent Component Analysis [ C ]. Proceeding of ICASSP' 98, Seattle, WA, May 1998, 12-15.

共引文献4

同被引文献8

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部