期刊文献+

基于独立分量分析的运动声源波达方向估计 被引量:1

Moving Sound Source DOA Estimation Based on Independent Component Analysis
下载PDF
导出
摘要 针对运动声源目标波达方向估计中,波束形成法和盲信号分离法存在不能分辨临近目标、计算量大等问题,提出采用独立分量分析算法进行估计。通过采用完全正交分解的独立分量分析实现对信号的去噪和降维,以揭示运动目标的数量,并在此基础上经GIVENS旋转实现对数据的更新和释放,采用梯度下降低通滤波选择合适的步长。坦克目标探测实验表明:此方法计算简便,收敛迅速,能准确探测目标数量,估计波达方向。 The methods of beam forming and blind signal separation on DOA estimation of moving noise objects, can not recognize nearing targets, and have a large calculation amount. Aiming at these problems, a new way of independent component analysis (ICA) was proposed in this paper. The noise and dimension reduction was car- ried out to reveal the moving targets amount by completely orthogonal ICA, based on which, the data was re- newed and released by GIVENS. Some form of gradient descent was adopted to minimize the cost function, ant the gradient could be monitored to adjust the step size appropriately. The experimental results indicated that th~ method was feasible and effective to detect moving objects.
出处 《探测与控制学报》 CSCD 北大核心 2012年第5期16-19,共4页 Journal of Detection & Control
关键词 波达方向 独立分量分析 运动目标 探测 算法 DOA ICA moving objects detecting algorithm
  • 相关文献

参考文献13

  • 1袁泉,石昭祥.一种基于空间时频分布的波达方向估计方法[J].探测与控制学报,2007,29(2):50-53. 被引量:1
  • 2王宏,李洪升,杨日杰,何友.一种基于改进传播算子的波达方向估计方法[J].探测与控制学报,2007,29(3):41-44. 被引量:1
  • 3金翔,张天骐,侯瑞玲,高永升.分数阶傅里叶变换与虚拟阵列相结合的波达方向估计[J].探测与控制学报,2010,32(5):55-59. 被引量:2
  • 4Josh Griffith Erling. Ststitical prefomancl analysis of source localization in multisorce, multiarray networks [J]. US:The Pennsylvania State University, 2005.
  • 5苏永振,袁慎芳.基于独立分量分析的多源冲击定位方法[J].振动与冲击,2009,28(8):134-137. 被引量:14
  • 6甘玲,刘国庆.基于小波提升和独立分量分析的运动目标检测[J].计算机应用于软件,2010,27(5):257-159.
  • 7Shoko Araki, Hiroshi Sawada,Ryo Mukai,Shoji Makino. DA estimation for multiple sparse sources with arbitrar- ily arranged multiple sensors[J]. J sign process syst, 2011 (63) : 265-275.
  • 8Masnadi M A,Banani S A. Separation and tracking of ma- neuvering sources with ICA and particle filters using a new switching dynamic model[J]. IEEE Transactions on aerospace and electronic systems,2010(6) :988- 100 5.
  • 9Jutten C, Herault J. Blind separation of sources, Part I: An adaptive algorithm based on neuromimatic architecture [J]. Signal Processing, 1991,24(1) : 1-10.
  • 10张贤达.矩阵分析于应用[M].北京:清华大学出版社,2004.

二级参考文献24

  • 1张艳红,齐林,穆晓敏,陶然.基于分数阶傅立叶变换的WLFM信号DOA估计[J].信号处理,2005,21(z1):57-60. 被引量:7
  • 2周晚林,王鑫伟.Hilbert变换在压电智能结构冲击定位中的应用[J].振动与冲击,2004,23(3):124-127. 被引量:8
  • 3Ziola S M, Gorman M R. Source location in thin plates using cross-correlation[J]. J. Acoust. Soc. Am. 1991, 90(5 ) : 2551 - 2556.
  • 4Linsker R. A local learning rule that enables Information maximization for arbitrary input distributions [ J ]. Neural Computation, 1988,12:1661 - 1665.
  • 5Bell J, Sejnowski T J. An information-maximisation approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7(6) :11129 - 1159.
  • 6Torkkola K. Blind separation of delayed sources based on information maximization[C]. In Proc. ICASSP, Atlanta, GA, May 7 - 10, 1996.
  • 7Torkkola K. Blind separation of convolved sources based on information maximization [ C ]. Neural Networks for Signal Processing [ 1996 ] VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop.
  • 8Belouchrani A,Amin M G.Time-frequency music[J].IEEE Signal Processing Letters,1999,6(5):109-110.
  • 9Amin M G.Spatial time-frequency distributions for direction finding and blind source separation[J].In Proc SPIE,1999,37(23):62-70.
  • 10QU Haitao,QI Lin,MU Xiaomin,et al.Estimation of coherent wideband LFM signals based on fractional Fourier domain[C]//Proceedings of the First International Conference on Control(1CICIC'06).Beijing,China:[s.n.],2006,3:18-21.

共引文献14

同被引文献8

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部