摘要
In this study,the original tourmaline and beryl mineral samples have been collected from a Brazilian pegmatite.The objective of this study was to examine the adsorption behavior of Brazilian ciclosilicate samples,towards divalent metals(Pb 2+,Mn 2+,and Zn 2+) in ethanol solution has been studies by a batch technique.The ciclosilicate samples were characterized by elemental analysis,Fourier transform infrared spectroscopy,helium picnometry,mercury porosity,and nitrogen adsorption-desorption.The Langmuir expression for adsorption isotherm was applied in order to determine the adsorption capacity to form a monolayer and the constant related to the adsorption intensity.In aqueous solution there was a significant adsorption increase with the temperature and pronounced synergistic effects were observed.The maximum number of moles adsorbed was determined to be 12.48 and 11.49 mmol/g for systems Pb 2+ /beryl and Pb 2+ /tourmaline,respectively.The energetic effects caused by metal cations adsorption were determined through calorimetric titrations.Thermodynamics indicated the existence of favorable conditions for such Pb 2+-,Mn 2+-,and Zn 2+-OH interactions.
In this study,the original tourmaline and beryl mineral samples have been collected from a Brazilian pegmatite.The objective of this study was to examine the adsorption behavior of Brazilian ciclosilicate samples,towards divalent metals(Pb 2+,Mn 2+,and Zn 2+) in ethanol solution has been studies by a batch technique.The ciclosilicate samples were characterized by elemental analysis,Fourier transform infrared spectroscopy,helium picnometry,mercury porosity,and nitrogen adsorption-desorption.The Langmuir expression for adsorption isotherm was applied in order to determine the adsorption capacity to form a monolayer and the constant related to the adsorption intensity.In aqueous solution there was a significant adsorption increase with the temperature and pronounced synergistic effects were observed.The maximum number of moles adsorbed was determined to be 12.48 and 11.49 mmol/g for systems Pb 2+ /beryl and Pb 2+ /tourmaline,respectively.The energetic effects caused by metal cations adsorption were determined through calorimetric titrations.Thermodynamics indicated the existence of favorable conditions for such Pb 2+-,Mn 2+-,and Zn 2+-OH interactions.
基金
The authors are indebted to CNPq for fellowships and CAPES for financial support