期刊文献+

基于拓扑马蹄的混沌动力学研究进展 被引量:10

PROGRESSES ON CHAOTIC DYNAMICS STUDY WITH TOPOLOGICAL HORSESHOES
下载PDF
导出
摘要 拓扑马蹄理论是混沌研究的重要分支,是迄今为止能够达到数学严格性的核心混沌研究方法之一.基于简明的空间几何化思想,拓扑马蹄为非线性系统复杂行为的数值与理论研究搭建了一座桥梁,从而人们可以进行混沌行为的不变集刻画、存在性证明、拓扑熵估计、以及内在机制揭示等一系列研究. 本文希望通过综述当今基于拓扑马蹄的混沌研究最新进展,使研究者深入了解这套功能强大的方法体系,并能加以应用. 本文首先从人们所熟知的 Smale 马蹄开始介绍现代拓扑马蹄理论的发展历程; 然后介绍了当今的拓扑马蹄引理,讨论了拓扑马蹄存在条件和相应的搜寻方法; 最后,利用拓扑马蹄研究的工具箱 HsTool,以经典离的散 Hénon 映射和著名的 Saito 电路为例,展示其拓扑马蹄的研究过程. The topological horseshoe theory is one of the most important ways to study chaos rigorously. With striking geometric clarity, the method bridges the gap between chaotic theory and numerical computation, and has been extensively used in the study of chaotic invariant sets, computer assisted proofs, topological entropy estimation, etc. In order to make more researchers understand this powerful method, we presents a brief review of to- pological horseshoe this paper. We first introduce the history from Smale' s horseshoe to topological horseshoes, showing their essential feature; and then present some useful theorems, the corresponding conditions and numerical methods, as well as a toolbox called HsTool; then give two examples, the Henon map and the hyperchaotic Saito circuit, to show how to find horseshoes in practical systems.
出处 《动力学与控制学报》 2012年第4期293-298,共6页 Journal of Dynamics and Control
基金 国家自然科学基金(10972082 61104150) 重庆市科委基金(cstcjjA40044) 重庆邮电大学博士启动金(A2009-12)~~
关键词 混沌 拓扑马蹄 符号动力学 拓扑熵 庞加莱映射 chaos, topological horseshoe, symbolic dynamics, topological entropy, Poincare
  • 相关文献

参考文献23

  • 1Smale S. Finding a horseshoe on the beaches of Rio. The Mathenmtical Intelligenzer, 1998, 20(1) : 39- 44.
  • 2Wiggins S. Global bifurcations and chaos: analytical meth- ods. New York: Springer- Verlag, 1988.
  • 3Robinson C. DynamicM systems: stability, symbolic dy- namics, and chaos. New York: CRC Press, 1999.
  • 4Morse M, G A Hedlund. Symbolic dynamics. American Journal of Mathematics, 1938,60 (4) : 815 - 866.
  • 5Zgliczynski P, M Gidea. Covering relations for multidimen- sional dynamical systems. Journal of Differential Equa- t/ons, 2004, 202 ( 1 ) : 32 - 58.
  • 6Szymczak A. The Conley index and symbolic dynamics. Topology, 1996, 35(2): 287-299.
  • 7Kaezy6ski T, Misehaikow K, Mrozek M. Computational homology. New York: Springer Verlag, 2004.
  • 8Plumecoq J, Lefranc M. From template analysis to genera- ting partitions: I: Periodic orbits, knots and symbolic en- codings. Physica D: Nonlinear Phenomena, 2000, 144 ( 3 -4) : 231-258.
  • 9Plumecoq J, Lefranc M. From template analysis to genera- ting partitions If: Characterization of the symbolic encod- ings. Arxiv Preprint Chao- Dyn/9907030, 1999.
  • 10Kennedy J, Yorke J A. Topological horseshoes. Transac- tions of the American Mathematical Society, 2001, 353 (6) : 2513 -2530.

同被引文献93

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部