期刊文献+

有界随机噪声参数激励下碰撞系统的矩稳定性 被引量:4

MOMENT STABILITY OF A SINGLE-DEGREE-OF-FREEDOM LINEAR VIBROIMPACT SYSTEM TO A BOUNDARY BANDOM PARAMETRIC EXCITATION
下载PDF
导出
摘要 研究了单自由度线性单边碰撞系统在有界随机噪声参数激励下系统的矩稳定性问题. 用 Zhuravlev 变换将碰撞系统转化为连续的非碰撞系统,然后用随机平均法得到了关于慢变量的随机微分方程. 利用伊藤法则给出了系统一、二阶矩满足的常微分方程,根据微分方程的稳定性理论得到了系统一阶矩稳定充分必要条件的解析表达式和二阶矩稳定充分必要条件的数值算法,并对理论结果用数值方法进行了仿真计算.理论分析和数值仿真表明,无论是相对于一阶矩还是二阶矩的稳定性,随着随机激励振幅变大,系统的稳定性区域变小从而使得系统变得不稳定. 而当调谐参数趋于零系统达到参数主共振情形时,系统的稳定性区域变得最小. 当随机噪声强度逐渐变小趋于零时,由二种矩稳定性给出的稳定性区域变得一致. 在一定的参数区域内,随机噪声使得系统稳定化. This paper investigated the resonance response and moment stability of a single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to boundary random parametric excitation. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the period for slowly varying random process. By using the It's differential rule, the differential equations ruling the time evolution of the first and second order re- sponse moments were obtained. The necessary and sufficient conditions of stability for the first and second order moments are that the matrix of the coefficients of the differential equations ruling the moments have complex ei- genvalues with negative real parts. The analytical expression of the stability condition of the first order moment was obtained, while the results of the second order moment stability were given numerically. Some numerical simulations and graphs were presented for representative cases. It is founded that, when the amplitude of the parametric excitation increases, the stability regions will reduce either for the first order moment or the second order moment stability. The stability regions will reduce to the minimum value if the detuning parameter tends to zero. The stability regions based on different order moments will become identical when the intensity of the random disturbance increases to zero. In some cases the stochastic excitation stabilizes the system.
出处 《动力学与控制学报》 2012年第4期372-378,共7页 Journal of Dynamics and Control
基金 国家自然科学基金项目(10772046 50978058) 广东省自然科学基金(7010407 10252800001000000 05300566) 全国优秀博士学位论文作者专项资金(200954)资助项目~~
关键词 线性碰撞系统 参数主共振响应 矩稳定性 Zhuravlev变换 随机平均法 linear vibroimpact system, parametric principal resonance responses, moment stability,Zhuravlev transformation method, random averaging method
  • 相关文献

参考文献22

  • 1Brogliato B. Nonsmooth mechanics. London: Springer-Ver- lag, 1999.
  • 2Metrikyn V S. On the theory randomly varying parameters. nykh Zavedenii, Radiofizika, sian) of vibro-impact devices with Izvestiya Vysshikh Ucheb- 1970, 13:4 -21 (in Rus-sian).
  • 3Stratonovich R L. Topics in the mheory of random noise (Vols. 1 and 2). New York:Gordan and Breach, 1963 and 1967.
  • 4Jing H S, Sheu K C. Exact stationary solutions of the ran- dom response of a single-degree-of-freedom vibroimpact sys- tem. Journal of Sound and Vibration, 1990,14:363 - 373.
  • 5Jing H S, Young M. Random response of a single-degree- of-freedom vibroimpact system with clearance. Earthquake Engineering and Structural Dynamics, 1990,19 : 789 - 798.
  • 6Huang Z L, Liu Z H, Zhu W Q. Stationary response of muhi-degree-of-freedom vibro-impact systems under white noise excitations. Journal of Sound and Vibration, 2004, 275 : 223 - 240.
  • 7Feng J Q, Xu W, Rong H W, Wang R. Stochastic re- sponse of Duffing-Van der Pol vibro-impact system under additive and multiplicative random excitations. Internation- al Journal of Non-Linear Mechanics, 2009, 44 : 51 - 57.
  • 8Zhuravlev V F. A method for analyzing vibration-impact systems by means of special functions. Mechanics of Solids, 1976, 11:23 -27.
  • 9Iourtchenko D V, Dimentberg M F. Energy balance for random vibrations of piecewise-conservative systems. Jour- nal of Sound and Vibration, 2001, 248:913-923.
  • 10Feng Q, He H. Modeling of the mean Poincare map on a class of random impact oscillators. European Journal of Me- chanics A/Solids, 2003, 22:267-281.

同被引文献40

  • 1丁旺才,谢建华.碰撞振动系统分岔与混沌的研究进展[J].力学进展,2005,35(4):513-524. 被引量:40
  • 2冯进钤,徐伟,王蕊.随机Duffing单边约束系统的倍周期分岔[J].物理学报,2006,55(11):5733-5739. 被引量:14
  • 3祝长生,陈拥军.机动飞行时航空发动机转子系统的振动特性[J].航空学报,2006,27(5):835-841. 被引量:33
  • 4Metrikyn V S. On the theory of vibro-impact devices with randomly varying parameters[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 1970, 13: 4-8.
  • 5Stratonovich R L. Topics in the theory of random noises[M]. 2rd ed. New York: Gordon and Breach, 1967.
  • 6Jing H S, Shan K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibroimpact system[J]. Journal of Sound and Vibration, 1990, 141(3): 363-373.
  • 7Jing H S, Young M. Random response of a single-degree-of-freedom vibro-impact system with clearance[J]. Earthquake Engineering and Structural Dynamics, 1990, 19: 789-798.
  • 8Huang Z L, Lin Z H, Zhu W Q. Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations[J]. Jottrttal of Sound and Vibration, 2004, 275(1/2): 223-240.
  • 9Feng Jinqian, Xu Wei, Rong Haiwu, et al. Stochastic response of Duffing-Van der Pol vibro-impaet system under additive and multiplieative random excitations[J]. International Journal of Non-Linear Mechanics, 2009, 44(1): 51-57.
  • 10Zhuravlcv V F. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976, 11: 23-27.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部