期刊文献+

广义投影矩阵线性组合的研究 被引量:3

Some Results on the Linear Combinations of Generalized Projectors
下载PDF
导出
摘要 投影矩阵和广义投影矩阵的线性组合在矩阵理论的研究中具有重要的意义,并广泛应用到统计、计算、优化、控制等学科领域中.假设A和B是两个n×n非零复矩阵,令P为A、B的线性组合,则P可表示为P=c1A+c2B,其中c1、c2为非零复数.在AB=BA的条件下,对A为广义投影、B为任意矩阵时,线性组合P分别为幂等矩阵、三次幂等矩阵、广义投影矩阵和超广义投影矩阵的充分必要条件进行了研究. Investigation of linear combinations of projector matrices and hypergeneralized projector matrices is an important topic in the matrix theory.It is widly applied to statistics,computing,optimization,control and other disciplines.Let A and B be n × n nonzero complex matrices,P a linear combination of A and B,so that P = c 1 A + c 2 A,where c 1,c 2 are nonzero complex numbers.In this paper,under the condition AB = BA,the sufficient and necessary conditions are given for P to be idempotent,tripotency,generalized projector and hypergeneralized projector,where A is a generalized projector and B an arbitrary matrix.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期734-737,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11061005) 教育部科技重点项目基金(210164) 贵州省科学技术基金(2012GZ10526)资助项目
关键词 广义投影 超广义投影 线性组合 generalized projector hypergeneralized projector linear combination
  • 相关文献

参考文献16

  • 1Wang G R, Wei Y M, Qiao S Z. Generalized Inverses: Theory and Computations [ M ]. Beijing:Seience Press,2004:58 -59.
  • 2B aldessari B. The distribution of a quadratic form of normal random variables [ J ]. Ann Math Statist, 1967,38:1700 - 1704.
  • 3Baksalary J K, Baksalary O M, Liu X J. Further properties of generalized and hypergeneralized projectors [ J ]. Linear Algebra Appl,2004,389:295 - 303.
  • 4Baksalary 0 M, Benitez J. On linear combinations of two commuting hypergeneralized projectors[J]. Comput Math Appl,2008, 56(10) :2481 -2489.
  • 5Baksalary J K, Baksalary 0 M, Grob J. On some linear combinations of hypergeneralized projectors [ J ]. Linear Algebra Appl, 2006,413:264 - 273.
  • 6Ozdemir H, Ozban A Y. On idempotency of linear combinations of idempotent matrices [ J ]. Appl Math Comput ,2004 ,159 :439 - 448.
  • 7Baksalary J K, Baksalary 0 M, Ozdemir H. A note on linear combination of commuting tripotent matrices[J]. Linear Algebra Appl,2004,388:45 - 51.
  • 8Deng C Y, Cvetkovic -Ilic D S, Wei Y M. Properties of the combinations of commutative idempotents [ J ]. Linear Mgebra Appl, 2011,436:202 - 221.
  • 9卜长江,李娜,孙艳玲.矩阵线性组合幂等性及立方幂等性的一些结论[J].哈尔滨工程大学学报,2009,30(12):1458-1460. 被引量:9
  • 10Bu C J, Zhao J M, Zheng J S. Group inverse for a class 2 *2 block matrices over skew fields[J]. Appl Math Comput,2008, 204 ( 1 ) : 45 - 49.

二级参考文献12

  • 1邓春源,李启慧,杜鸿科.Generalized n-idempotents and Hyper-generalized n-idempotents[J].Northeastern Mathematical Journal,2006,22(4):387-394. 被引量:2
  • 2RAO C R, MITRA S K. Generalized inverse of matrices and its applications[ M]. New York: John Wiley, 1971:27-44.
  • 3SEBER G A F. Linear regression analysis[ M]. New York, John Wiley, 1977:203-224.
  • 4GRAYBILL F A. Introduction to matrices with applications in statistics[ M]. California: Wadsworth Publishing Company Inc, 1969:57-91.
  • 5BALDESSARI B. The distribution of a quadratic form of normal random variables[J]. Ann Math Statist, 1967, 38: 1700-1704.
  • 6BAKSALARY J K, BAKSALARY O M. Idempotency of linear combinations of two idempotent matrices [ J ]. Linear Algebra Appl, 2000, 321: 3-7.
  • 7OZDEMIR H,OZBAN A Y. On idempotency of linear combinations of idempotent matrices [ J]. Appl Math Comput, 2004, 159: 439-448.
  • 8BAKSALARY J K, BAKSALARY O M, STYAN G P H. Idempotency of linear combinations of an idempotent matrix and a tripotent matrix [J]. Linear Algebra Appl, 2002, 354 : 21-34.
  • 9BAKSALARY J K, BAKSALARY O M, OZDEMIR H. A note on linear combination of commuting tripotent matrices [J]. Linear Algebra Appl, 2004, 388 : 45-51.
  • 10BU C J, ZHAO J M, ZHENG J S. Group inverse for a class 2 × 2 block matrices over skew fields[J]. Appl Math Comput, 2008, 204( 1 ) : 45-49.

共引文献8

同被引文献13

  • 1Gro J,Trenkler G: Generalized and hypergeneralized projectors [ J ]. Linear Algebra and its Applications, 1997,264:463 - 474.
  • 2Baksalary K, Baksalary O M, Liu J X. Further properties of gen- eralized projectors [ J ]. Linear Algebra and its Applications, 2004,389 : 295 - 303.
  • 3Baksalary K, Baksalary 0 M. On linear combinations of general- ized projectors[ J ]. Linear Algebra and its Applications, 2004,388 : 17 - 24.
  • 4Grol3 J ,Trendkler G. Generalized and hypergeneralized projectors[ J]. Linear Algebra Appl, 1997,3:463 -474.
  • 5B aksalary J K, Baksalary O M, Liu X. Further properties of generalized and hypergeneralized projectors [ J ]. Linear Algebra Appl,2004 ,389 :295 - 303.
  • 6Stewart G W. A note on Generalized and hypergeneralized projectors [ J ]. Linear Algebra Appl,2006 ,412 :408 - 411.
  • 7Baksalary J K,Baksalary O M. On linear combinations of generalized projectors[ J1. Linear Algebra Appl,2004 ,388 :17 -24.
  • 8Baksalary J K,Baksalary 0 M ,Grol3 J. On some linear combinations of hypergeneralized projectors[ J]. Linear Algebra Appl,2006,413:264 - 273.
  • 9Du H K,Li . The spectral characterization of generalized projectors[ J]. Linear Algebra Appl,2005 ,400 :313 -318.
  • 10曾月迪,潘素娟.四元数体上广义投射影矩阵和超广义投影矩阵[J].通化师范学院学报,2013,34(10):6-8. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部