期刊文献+

具双时滞的生理模型的分支分析 被引量:1

Bifurcation Analysis for a Physiological Model with Two Delays
下载PDF
导出
摘要 研究了一类简化的具有双时滞的生理模型.得到了该模型在正平衡点稳定的充分条件,通过选择两时滞的和τ为分支参数,得到了当时滞τ通过一系列的临界值时,Hopf分支产生,然后应用中心流形和正规型理论,得到了关于确定Hopf分支特性(例如Hopf分支方向和分支周期解的稳定性以及Hopf分支周期解的周期等)的计算公式.最后进行数值模拟验证了所得结果的正确性. In this paper,a class of simplified physiological model with two delays is investigated.We get the sufficient condition of stability at the positive equilibrium.By choosing the sum τ of two delays as a bifurcation parameter,we show that Hopf bifurcation can occur when sum τ passes a sequence of critical values.Meanwhile,based on the center manifold theory and the normal form approach,we derive the formula determing the properties of Hopf bifurcating periodic orbit,such as the direction of Hopf bifurcation,the stability of Hopf bifurcating periodic solution and the periodic of Hopf bifurcating periodic solution.Finally,numerical simulations are carried out to illustrate the analytical results.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期759-765,共7页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11261010) 贵州省优秀科技教育人才省长资金(黔省专合[2012]53号) 贵州省科技厅科学技术基金(黔科合J字[2012]2100号) 贵州省科技厅软科学项目(黔合字体R字[2011]LKC2030号)资助项目
关键词 时滞 生理模型 HOPF分支 稳定性 周期解 delay physiological model Hopf bifurcation stability periodic solution
  • 相关文献

参考文献15

  • 1Cartwright M, Husain M. A model for the control of testosterons secretion[ J ]. J Theo Biol, 1986,123:239 - 250.
  • 2Murray J D. Mathematical Biology[ M]. New York:Springer - Verlag, 1989.
  • 3魏俊杰,李秀玲.一类具时滞的生理模型的Hopf分支[J].应用数学学报,2000,23(2):172-180. 被引量:5
  • 4Cooke K, Grossman Z. Discrete delay, distributed delay and stability switches[ J ]. J Math Anal Appl, 1982,86:592 -627.
  • 5Hale J K, Lunel S V. Introduction to Functional Differential Equations [ M ]. New York:Springer- Verlag, 1993.
  • 6Hassard B, Kazarinoff N, Wan Y H. Theory and application of Hopf bifurcation[ C ]//London Math Soc Lect Notes. 41. Combridge : Combridge University Press, 1981.
  • 7Song Y, Wei J. Bifurcation analysis for Chen' s system with delayed feedback and its application to control of chaos [ J ]. ChaosSoliton Fract,2004,22:75 - 91.
  • 8Zou L, Tang Y. Stability and Hopf bifurcation for a delay competition diffusion system[J]. Chaos Soliton Fract,2002,14:1201 -1225.
  • 9Wei J, Jiang W. Stability and bifurcation analysis in van der Pol' s oscillator with delayed feedback[ J]. J Sound Vibration,2005, 283:801 - 819.
  • 10Li X, Chen G, Li C. Stability and bifurcation of disease spreading in complex networks[J]. Inter J Sys Sci,2004,35:527 -536.

二级参考文献13

共引文献11

同被引文献12

  • 1宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 2D J Wollkind, J A Logan. Temperature-dependent predator-prey mite ecosystem on applet tree foliage [ J ]. Math Biology, 1978,6(3 ) :265-283.
  • 3Wollkind D J, Coltings J B, Logan J A. Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees[ M]. J Math Biol, 1988,50:379-409.
  • 4Li Yilong, Xiao Dongmei. Bifurcations of a predator-prey system of holling and Leslie types [ J ]. Chaos Solitons and Fratals, 2007,34 ( 2 ) : 606 -620.
  • 5Qu Ying, Wei Junjie. Bifurcation analysis in a time-delay for prey-predator growth with stage-structure [ J]. Nonlinear Dynamics, 2007,49 ( 1 ) :285-294.
  • 6Yafia R, Adnani F F, Alaoui H T. Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-gower and holling-type II schemes [ J ]. Nonlinear Analysis Real World Applications ,2008,9 (5) :2055-2067.
  • 7Gao Shujing,Chen Lansun,Teng Zhidong. Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator [ J ]. Applied Mathematics and Computation, 2008,202 (2) :721-729.
  • 8Gan Qintao, Xu Rui, Yang Pinghua. Bifurcation and chaos in a ratio-dependent predator-prey system with time delay [ J ]. Chaos Solitons Fractals,2009,39(4) : 1883-1895.
  • 9Liao Maoxin ,Tang Xianhua, Xu Changjin. Bifurcation analysis for a three-species predator-prey system with two delays [ J ]. Communications in Nonlinear Science and Numerical Simulation,2012,17( 1 ) :183-194.
  • 10Hassard B D, Kazarinoff N D, Wan Y H. Theory and applications of hopf bifurcation [ M ]. Cambridge : Cambridge University Press, 1981.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部