期刊文献+

一类变种半群的格林关系和正则性 被引量:1

Green's relations and regularity of a kind of variants semi-group
下载PDF
导出
摘要 F-(X)={α∈TX:x∈X,xα≤x}是一个降序变换半群.设α∈F-(X)且α是幂等元.Tα-(X)={f∈TX:(x,y)∈ker(α)■(xf,yf)∈ker(α)且xfα≤xα},取定θ∈Tα-(X),在Tα-(X)上定义一种新的运算"°",对任意的f,g∈Tα-(X),f°g=fθg,fθg表示三个映射在一般意义上的复合.Tα-(X)在这种新的运算下构成的半群称为Tα-(X)上的变种半群,记为Tα-(X;θ).讨论了Tα-(X;θ)的green关系和正则性. which is the production of mappings. We refer the semi - group after the new operation as a variant semi - group of Ta (X), denoted by Ta(X; e). In this paper we discuss the Green relations and regularity.
出处 《贵州师范学院学报》 2012年第9期4-7,共4页 Journal of Guizhou Education University
关键词 降序 保等价关系 变种半群 green关系 正则性 decreasing order preserving equivalence relations variant semi -group Green relations regularity
  • 相关文献

参考文献8

  • 1A. Laradji and A. Umar Communicated by John B. Foun- tain. : On Certain Finite Semigroups of Order - decreasing Tranformations I [ J ]. Semlgroup Forum, 2004,69 : 184 - 200.
  • 2Abdullahi Umar communicated by john M. Howie. :Sem- igroups of order - decreasing Transformation: The Isomor- phism Theorem[ J]. Semigroup Forum, 1996,95:220 - 224.
  • 3Howie, J. M. Fundamentals of Semigroup Theory [ M ], Oxford University Press Ine ,New York. 1995.
  • 4Olexandr Canyushkin. Olodymyr Mazorchuk : Classical Finite Transformation Semigroups [ M ] . London: Spring- er Science + Business Media ,2009.
  • 5Pei Huisheng. Regularity and Green' s Relations for Sem- igroups of Transformation that Preserve an Equivalence [ J]. Communication in Algebra,2005,33 : 109 - 118.
  • 6Umar A. On the Semigroups of oder - Decreasing Finite Full Transformations [ J ]. Proc Roy Soc Edinburgh, 1992,120:129-- 142.
  • 7裴惠生,吴永福.保持两个等价关系的夹心半群的格林关系和正则性[J].信阳师范学院学报(自然科学版),2008,21(2):161-164. 被引量:4
  • 8孙垒,翟红村,丁凤霞.T_E(X)的变种半群T_E(X;θ)的若干性质[J].信阳师范学院学报(自然科学版),2004,17(2):129-130. 被引量:4

二级参考文献14

  • 1[1]HOWIE J M.Fundamentals of semigroups theory[M].Oxford University Press,1995.
  • 2[2]PEI Huisheng.Equivalences,α-semigroups and α-congruences[J].Semigroup Forum,1994,49:49-58.
  • 3[3]SYMONS J S V.On a generalization of the transformation semigroup[J].J Austral Math Soc,1975,19A:47-61.
  • 4[4]PEI Huisheng,GUO Yufang.Some congruence on S(X)[J].Southeast Asian Bulletin of Mathematics,2000,24,73-83.
  • 5Howie J M. Fundamentals of Semigroup Theory[ M ]. Oxford University Press, 1995.
  • 6Magill K D, Subbiah S. Green's Relations for Regular Elements of Sandwich Semigroups, Ⅰ: Genera/Resalts[J]. Proc London Math Soc ( S0024-6115 ), 1975,31 (3) : 194-210.
  • 7Magill K D, Subbiah S. Green's Relations for Regular Elements of Sandwich Semigroups, Ⅱ: Semigroups of Continous Functions [ J ]. J Austral Math Soc ( Series A) ( S0263-6115 ), 1978,25 ( 1 ) :45-65.
  • 8Magill K D,Misra P R,Tewari U B. Symons' d-congruence on Sandwich Semigroups[J]. Czec Math J(S0011-4042) ,1983,33( 1 ) :221-236.
  • 9Pei H S, Sun L, Zhai H C. Green's Relations for the Variants of Transformation Semlgroups Preserving an Equivalence Relation [ J ]. Communications in Algebra(S0092-7872) ,2007,35 (6) : 1971-1986.
  • 10Hickey J B. Semigroup under a Sanduich Operation [ J ]. Proc Edinburgh Math Soc ( S0013 -0915 ), 1983,26 ( 2 ) : 371-382.

共引文献5

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部