期刊文献+

基本解方法求解简谐外力作用下的Kirchhoff-Love板反源问题

Fundamental Solution Method for the Inverse Source Problem for Kirchhoff-Love Plate Under Harmonic Load
下载PDF
导出
摘要 主要考察弹性薄板在规则外力作用下的振动模型.在给定外力源项随时间变化模式的情况下,通过对薄板局部区域一段时间的振动位移观测数据,来反演外力大小的问题,也就是通常所谓的弹性薄板反源问题.给出了弹性薄板反源解的唯一性定理,并推导出板方程的基本解.取基本解方法和Tikhonov正则化方法的精髓,在简谐模式源项作用的情况下,构造了一套算法来反解源项.对Euler-Bernoulli杆和Kirchhoff-Love板的数值算例表明,无论源项是否光滑,测量是否带有误差,基本解方法都因其较好的计算效果,有着广泛的适用性. The elastic plate vibration model under the external force was discussed. The main problem was the determination of the size of the source term by the given mode of the source and some observations from the body of the plate over a time interval, which was referred to be the inverse source problem of plate equation. The uniqueness theorem for this problem was stated, and the fundamental solution of the plate equation was derived. In the case that the plate was driven by harmonic load, fundamental solution method and Tikhonov regularization technique were used to calculate the source term. Numerical experiments to Euler-Bernoulli beam and Kirchhoff-Love plate show that the fundamental solution method can work well for practical use, no matter the source term is smooth or piecewise.
出处 《应用数学和力学》 CSCD 北大核心 2012年第12期1411-1430,共20页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(11072141)
关键词 Kirchhoff-Love板 Euler—Bernoulli杆 弹性 反源问题 基本解方法 Tik-honov正则化方法 无网格方法 Kirchhoff-Love plate Euler-Bernoulli beam elastic inverse source problem tim-damental solution method Tikhonov regularization method meshless numericalmethod
  • 相关文献

参考文献29

  • 1Yang Y, Lim C W. A new nonlocal cylindrical shell model for axisymmetric wave propagation in carbon nanotubes[ J]. Advanced Science Letters, 2011,4(1) : 121-131.
  • 2Zhao X, Ng T Y, Liew K M. Free vibration of two-side simply-supported laminated cylindrical panels via the mesh-free kp-Ritz method [J]. International Journal of Mechanical Sciences, 2004, 46( 1 ) : 123-142.
  • 3Zhou D, Lo S H, Cheung Y K. 3-D vibration analysis of annular sector plates using the Cheby- shev-Ritz method[J]. Journal of Sound and Vibration, 2009, 320 (1/2) : 421-437.
  • 4Liu Y, Hon Y C, Liew K M. A meshfree Hermite-type radial point interpolation method for Kirchhoff plate problems[J]. International Journal for Numerical Methods in Engineering, 2005, 66(7) : 1153-1178.
  • 5Kttrpa L, Pilgun G, Amabili M. Nonlinear vibrations of shallow shells with complex boundary: R-ftmctions method and experiments [J]. Journal of Sound and Vibration, 2007, 306 ( 3/ 5) : 580-600.
  • 6Qian L F, Batra R C, Chen L M. Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshiess local Petrov-Galerkin method [J]. Composites Part B: Engineering, 2004, 35 (6/8) : 685-697.
  • 7Sladek J, Sladek V, Wen P H, Aliabadi M H. Meshless local Petrov-Galerkin(MLPG) method for shear deformable shells analysis [ J ]. Chinese Journal of Mechanical Engineering, 2006, 13(2) : 103-117.
  • 8Krys' ko V A, Papkova I V, Soldatov V V. Analysis of nonlinear chaotic vibrations of shallow shells of revolution by using the wavelet transform [ J ]. Mechanics of Solids, 2010, 45 ( 1 ) : 85- 93.
  • 9李善倾,袁鸿.简支梯形底扁球壳自由振动问题的准Green函数方法[J].应用数学和力学,2010,31(5):602-608. 被引量:10
  • 10Michaels J E, Pao Y H. The inverse source problem for an oblique force on an elastic plate [J]. Journal of the Acoustical Society of America, 1985, 77(5) : 2005-2011.

二级参考文献8

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部