摘要
在非交换微分学的基础上,给出了半离散演化方程的研拓结构理论,并利用这一理论讨论了非线性薛定谔方程的一个离散模型(Ablowitz-Ladik方程).在本文中,讨论了正弦-戈登方程的一个半离散模型,并得到了它的拉克斯对.
Based on the noncommutative differential calculus,we have presented a theory of prolongation structure for semi-discrete nonlinear evolution systems and have discussed a semi-discrete model of the nonlinear Schrdinger equation(the Ablowitz-Ladik equation).This paper discusses a semi-discrete model of the Sine-Gordon equation and obtain its Lax pair.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2012年第6期677-682,共6页
Journal of Henan University:Natural Science
基金
National Natural Science Foundation of China(10801045)
Program for Science & Technology Innovation Talents in Universities of Henan Province(2010HASTIT033)
Foundation of Henan Technology Committee(082300410020)
关键词
非交换微分学
拉克斯对
正弦-戈登方程
noncommutative differential calculus
Lax pair
Sine-Gordon equation