期刊文献+

弦截法在非线性方程组的推广 被引量:4

The improvement of secant method in nonlinear equations
下载PDF
导出
摘要 通过对求解非线性方程组的牛顿方法的研究,在介绍了求解非线性方程的弦截法和快速弦截法的基础上,给出了求解非线性方程组的弦截法。非线性方程组的弦截法实际上是弦截法从非线性方程的一个推广,该推广避免了牛顿方法在求解非线性方程组的过程中出现导数为0,或很小时带来的困难。还给出了弦截法求解非线性方程组的详细步骤,并结合具体算例验证了该方法的收敛性以及收敛速度。 algorithm nonlinear nonlinear Through solving nonlinear equations of the Newton method, based on the existing for solving equations secant method and fast secant method, the secant method of the equations is introduced. The secant method of the nonlinear equations is extension of equation. It avoids solving the derivative. The approach of the new secant method of nonlinear equations is detailed given, and the convergence and speed are proved through several examples.
出处 《保山学院学报》 2012年第5期53-56,共4页 JOURNAL OF BAOSHAN UNIVERSITY
关键词 非线性方程组 弦截法 快速弦截法 牛顿迭代 nonlinear equations secant method fast secant method Newton iterative
  • 相关文献

参考文献3

二级参考文献14

  • 1李平先,毕苏萍.对称配筋小偏心受压构件的截面设计[J].四川建筑科学研究,2004,30(2):7-9. 被引量:9
  • 2陈兰平,焦宝聪,马恩林.一种改进的Newton迭代法[J].首都师范大学学报(自然科学版),1996,17(3):90-93. 被引量:5
  • 3李庆扬 王能超.数值分析[M].武汉:华中理工大学出版社,1982..
  • 4AMAT S, BUSQUIER S, GUTIERREZ J M. Geometric constructions of iterative functions to solve nonlinear equations[J]. J Compt Appl Math, 2003,157 (1):197- 205.
  • 5SHARMA J R. A family of third-order methods to solve nonlinear equations by quadratic curves approximation [J]. Appl Math Comput, 2007,184(2) :210-215.
  • 6NOOR K I, NOR M A, MOMANI S. Modified Householder iterative method for nonlinear equations [ J ]. Appl Math Comput, 2007,190(2) : 1534-1539.
  • 7EZQUERRO J A, HEMANDEZ M A. On Halley-type iterative with free second derivative [ J ]. J Comput Appl Math, 2004,170(2) :455-459.
  • 8HALLEY E. A New, exact and easy method of finding the roots of equations generally, and that without any previous reduction [J]. Phil Roy Soc London, 1964, 18 ( 1 ) : 136-145.
  • 9GOLUB G H, Van LOAN C F. Matrix computations [M]. 3rd Ed. Baltimore and London: The Johns Hopkins University Press, 1996:208-222.
  • 10KELLEY C T. Iterative methods for linear and nonlinear equations [ M]. Philadelphia: SIAM, 1995:71-109.

共引文献19

同被引文献14

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部