期刊文献+

利用压缩感知方法的高分辨率三维层析SAR研究 被引量:3

High Resolution 3D Tomographic SAR with Compressive Sensing
原文传递
导出
摘要 利用压缩感知方法解决SAR三维层析成像中的频谱估计问题,弥补了传统谱估计方法的一些缺陷,准确重建了来自不同散射目标的回波信号。实验结果表明,该方法不仅能够有效地区分影像中同一像元中的多个散射体,而且可以较为准确地获取目标散射体相对强度分布及高程信息,为目标的分类和识别提供更多依据,显现出对数据量要求较少及抗噪声性能强等优势。 In 2D SAR imaging,the ambiguity problem is hindering the SAR image interpretation.A new method of compressive sensing(CS) is used to solve the spectral analysis problem in SAR tomography for the first time.The signal reconstruction is demonstrated using simulations and TerraSAR-X spotlight data of Berlin.TomoSAR with CS has huge potential,because not only multiple scatterers inside one resolution cell can be separated,the elevation positions and height of scatters can be accurately measured in the reflectivity slice,but also CS is more robust to noise,has lower computational effort and use less data.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第12期1456-1459,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41174120 41021061) 高等学校博士学科点专项科研基金资助项目(20110141110057)
关键词 合成孔径雷达 压缩感知 层析合成孔径雷达 高分辨率 SAR compressive sensing tomographic SAR very high resolution
  • 相关文献

参考文献11

  • 1Zhu X. Spectral Estimation for Synthetic Aperture Radar Tomography[M]. Munich: Technical Uni- versity of Munich, 2008.
  • 2Candes E, Romberg J, Tao T. Stable Signal Recow ery from Incomplete and Inaccurate Measurements[J]. Science, 2005, 40 698:1-15.
  • 3闫丽丽,高井祥,孙久运,许长辉.利用CRLB的数字摄影测量人工标志定位不确定性评估[J].武汉大学学报(信息科学版),2010,35(1):106-109. 被引量:1
  • 4Fornaro G, Serafino F, Soldovieri F. Three-Dimen- sional Focusing with Multipass SAR Data[J]. IEEE Trans Geosci Remote Sens, 2003,41(3) : 507-517.
  • 5Candes E J, Romberg J. Quantitative Robust Un- certainty Principles and Optimally Sparse Decompo- sitions[J]. Foundations of Compute Math, 2006, 6 (2):227-254.
  • 6Candes E J. Compressive Sampling[J]. Proc Int Congr Math , 2006(3):1 433-1 452.
  • 7Lombardini F. Differential Tomography: a New Framework for SAR Interferometry[C]. IGARSS, Toulouse, France, 2003.
  • 8Zhu X X, Bamler R. Very High Resolution Space- borne SAR Tomography in Urban Environment[J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2010,48(12): 4 296-4 308.
  • 9Baraniuk R. Compressive Sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 10Fornaro G, Reale D, Serafino F. Four-Dimensional SAR Imaging for Height Estimation and Monitoring of Single and Double Scatterers[J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2009, 47 (1) : 224-237.

二级参考文献19

  • 1史文中,曹辉,张剑清.基于高分辨率影像的城市三维建模[J].武汉大学学报(信息科学版),2004,29(9):783-787. 被引量:26
  • 2张祖勋.数字摄影测量与计算机视觉[J].武汉大学学报(信息科学版),2004,29(12):1035-1039. 被引量:88
  • 3黄桂平.圆形标志中心子像素定位方法的研究与实现[J].武汉大学学报(信息科学版),2005,30(5):388-391. 被引量:52
  • 4Gutierrez J A, Armslrong B S R. Precision Landmark I.ocauon for Machine Vision and Photogrammetry[M]. Berlin: Springer, 2008.
  • 5Zhang Xin, Willetl P. Bar-Shalom Y. Dynamic Cramer-Rao Bound for Target Tracking in Clutter [J]. IEEE Transactions on AES. 2005, 41 (4):1 154-1 167.
  • 6Tichavsky P, Muravchik C H, Nehorai A. Posterior Cramer-Rao Bounds for Discrete-Time Nonlinear Filtering[J]. IEEE Transactions on SP, 1998, 46 (5): 1 386-1 396.
  • 7Niu R. Willett P K, Bra-Shalom Y. Matrix CRLB Scaling Due to Measurements of Uncertain Origin [J]. IEEE Transactions on SP, 2001, 49 (7): 1 325-1 335.
  • 8Stilla U, Soergel U, Thoennessen U. Potential and Limits of InSAR Data for Building Reconstruction in Built-up Areas[J]. ISPRS Journal of Photogramme- try & Remote Sensing, 2003, 58(1): 113-123.
  • 9Simonetto E, Oriot H, Garello R. Rectangular Building Extraction from Stereoscopic Airborne Ra- dar Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10):2 386-2 395.
  • 10Brunner D, Lemoine G, Bruzzone L, et al. Building Height Retrieval from VHR SAR Imagery Based onan Iterative Simulation and Matching Technique[J]. IEEE Transactions on Geoseience and Remote Sens- ing, 2010, 48(3):1 487-1 504.

共引文献13

同被引文献52

  • 1Zhu Xiaoxiang, Bamler R. Very High Resolution Spaeeborne SAR Tomography in Urban Environ- ment[J]. IEEE Transactions on Geoscience and Re- mote Sensing, 2010, 48(12):4 296-4 308.
  • 2Chan C K, Farhat N H. Frequency Swept Tomo- graphic Imaging of Three-Dimensional Perfectly Conducting Objects[J]. IEEE Transactions on An- tennas and Propagation, 1981, 29(2) :312-319.
  • 3Pasquali P, Pellegrini R, Prati C, et al. Combina- tion of Interferograms From Ascending and De- scending Orbits[C]. IEEE International Geoscience and Remote Sensing Symposium, California, 1994.
  • 4Pasquali P, Prati C, Rocca F, et al. A 3-D SAR Experiment with EMSL Data[C]. IEEE Interna-tional Geoscience and Remote Sensing Symposium, Firenze, 1995.
  • 5Reigber A, Moreira A. First Demonstration of Air- borne SAR Tomography Using Multibaseline L- Band Data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5) :2 142-2 152.
  • 6Fornaro G, Serafino F, Soldovieri F. Three-Dimen sional Focusing with Multipass SAR Data [J]. IEEE Transactions on Geoscience and Remote Sens ing, 2003, 41(3) :507-517.
  • 7Balz T, Wei L H, Jendryke M, et al. TomoSAR and PS-InSAR Analysis of High-rise buildingsin Berlin[C]. IEEE International Geoscience and Re- mote Sensing Symposium, Munich, 2012.
  • 8Jaworski R C. Hybrid Butterworth Filter Module [J]. IBM Technical Disclosure Bulletin, 1985, 28 (5): 2 164-2 165.
  • 9Schwarz G. Estimating the Dimension of a Model [J]. Annals of Statistics, 1978, 6(2): 461-464.
  • 10Chan C K and Farhat N H. Frequency swept tomographic imaging of three-dimensional perfectly conducting objects[J]. IEEE Transactions on Antennas and Propagation, 1981, 29(2): 312-319.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部