期刊文献+

应用于遥感图像分割的原型提取谱聚类集成算法 被引量:2

Prototypes-Extraction Spectral Clustering Ensemble Algorithm Applied to Remote Sensing Image Segmentation
原文传递
导出
摘要 针对遥感图像数据量大、类别归属复杂的特点,提出了一种用于遥感图像分割的原型提取谱聚类算法。该算法首先采用广义模糊c-均值聚类算法对遥感图像进行过分割,将得到的聚类中心作为每个分割区域的代表点;然后,通过构造代表点之间的相似性矩阵,利用谱图划分方法对代表点进行聚类;最后,根据代表点的聚类结果对图像像素点进行重新归类来获得遥感图像的最终分割结果。此算法涉及到3个参数,为了克服算法对于参数的敏感性和内在的随机性,进一步引入集成策略,给出了原型提取谱聚类的集成算法。 Aiming at the huge data amount and pixel complex ownership of remote sensing images,a prototypes-extraction spectral clustering algorithm for remote sensing image segmentation was proposed.Firstly,the generalized fuzzy c-means algorithm was adopted to perform an over-segmentation of the image,and the obtained clustering prototypes were regarded as the representative points of segmentation regions to reduce the data amount of original image.Secondly,the similarity matrix between the representative points was constructed,and then the spectral graph partitioning method was utilized to cluster the representative points.Eventually,based on the clustering result of representative points,the image pixels were reclassified to obtain the final image segmentation results.There are three parameters in the prototypes-extraction spectral clustering algorithm.In order to overcome the parameter sensitivity and inherent randomness of this method,an ensemble strategy was further introduced into the method and its ensemble algorithm is presented.The segmentation experiments on artificial texture and remote sensing images show that this proposed ensemble method behaves well in segmentation performance.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第12期1472-1476,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(61102095 61105064) 陕西省教育厅科研计划资助项目(11JK1008 2010JK835 2010JK837) 智能感知与图像理解教育部重点实验室开放基金资助项目(IPIU012011008)
关键词 遥感图像分割 聚类算法 集成策略 remote sensing image segmentation clustering algorithm ensemble strategy
  • 相关文献

参考文献12

  • 1钟燕飞,张良培,李平湘.遥感影像分类中的模糊聚类有效性研究[J].武汉大学学报(信息科学版),2009,34(4):391-394. 被引量:11
  • 2Bandyopadhyay S. Satellite Image Classification U- sing Genetically Guided Fuzzy Clustering with Spa- tial Information[J]. International Journal of Remote Sensing, 2005, 26(3): 579-593.
  • 3Bezdek J C. Pattern Recognition wilh Fuzzy Objec- tive Function Algorilhms[M]. New York: Plenum Press, 1981.
  • 4Zhu L, Chung F I., Wang S T. Generalized fuzzy c- means Clustering Algorhhm with Improved Fuzzy Partitions[J]. IEEE Transaction Systems, Man, and Cybernetics Part B: Cyber, 2009, 39(3): 578- 591.
  • 5Nason G, Silverman t3. The Stationary Wavelet Transformation and Some Sta*istical Applications [M]//Antoniadis A, Oppenheim G. Lecture Notes in Statistcs 103: Wavelets and Stalistics. New York: Springer-Verlag, 1995.
  • 6Shi J B, Malik J. Normalized Cuts and Image Seg mentation[J]. IEEE Transactions on Pattern Anal ysis and Machine Intelligence, 2000, 22(8): 888- 905.
  • 7Ng A Y, Jordan M I, Weiss Y. On Spectral Cluste- ring: Analysis and an Algorithm [M]//Dietterich T, Becker S, Ghahramani Z. Advances in Neural Information Processing Systems. USA: MIT Press, 2002.
  • 8Laskaris N A, Zafeiriou S P. Beyond FCM: Graph- theoretic Post-Processing Algorithms for Learning and Representing the Data Structure [J]. Pattern Recognition, 2008, 41(8): 2 630-2 644.
  • 9Strehl A, Ghosh J. Cluster Ensembles.. a Knowl edge Reuse Framework for Combining Multiple Par titions[J]. The Journal of Machine Learning Research, 2003, 3(12): 583-617.
  • 10Brodatz P. Textures= a Photographic Album for Artists and Designers[M]. New York: Dover Pub- lications, 1966.

二级参考文献15

  • 1Pal N R, Bezdek J C. On Cluster Validity for the Fuzzy C-means Model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.
  • 2Bezdek J C. Clustering Validity with Fuzzy Sets[J]. Journal of Mathematical Biology, 1974(1): 57-71.
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum Press, 1981.
  • 4Windham M P. Cluster Validity for Fuzzy Cluste ring Algorithms[J]. Fuzzy Sets and Systems, 1981 (5) : 177-185.
  • 5Dave R N. Validating Fuzzy Partition Obtained Through C-shells Clustering [J]. Pattern Recognition Letters, 1996, 17:613-623.
  • 6Xie X L, Beni G. A Validity Measure for Fuzzy Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13:841-847.
  • 7Kwon S H. Cluster Validity Index for Fuzzy Clustering[J]. Electronics Letters, 1998, 34(22):2 176- 2 178.
  • 8Kwon Tang Y G, Sun F C, Sun Z Q. Improved Validation Index for Fuzzy Clustering[C]. American Control Conf, Portalnd, USA, 2005.
  • 9Fukuyama Y, Sugeno M. A New Method of Choosing the Number of Clusters for the Fuzzy C-means Method [C]. The 5th Fuzzy Syst Symp, Japan, 1989.
  • 10Wu K L, Yang M S. A Cluster Validity Index for Fuzzy Clustering[J]. Pattern Recognition Letters, 2005, 26:1 275-1 297.

共引文献10

同被引文献34

  • 1刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:82
  • 2袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:154
  • 3夏梦雨,叶春明,吴勇.利用博弈演化算法求解置换Flow shop调度问题[J].制造业自动化,2007,29(7):93-95. 被引量:5
  • 4Von Luxburg U. Statistics and Computing, 2007, 17(4): 395.
  • 5Peng H, Long F, Ding C. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226.
  • 6HAN J, KAMBER M. Data mining : concepts and techniques, third edition[M]. San Francisco .. Morgan Kaufmann, 2011 .. 443-495.
  • 7ANIL K J. Data clustering : 50 years beyond K-means[J]. Pattern Recognition Letters, 2010,31 (8) : 651-666.
  • 8PARK H,JUN C. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2008,36 (2) :3336-3341.
  • 9ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH.. a new data clustering algorithm and its applications [J]. Data Mining and Knowledge Discovery, 1997,1 (2) .. 141-82.
  • 10GUHAA S,RASTOGIB R,SHIMC K, et al. Cure: an efficient clustering algorithm for large databases[J]. Information Systems, 2001,26(1) :73-84.

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部