期刊文献+

非自治常微分p-Laplacian系统周期解的存在性 被引量:1

Existence of Periodic Solutions to Non-autonomous Ordinary p-Laplacian Systems
下载PDF
导出
摘要 研究了非自治常微分p-Laplacian系统的周期解的存在性。当具有p-线性增长非线性项时,利用临界点理论中的鞍点定理得到了系统周期解存在性的充分条件,所得结果推广了已有结果。 This paper studied the existence of periodic solutions to non-autonomous ordinary differentia/ p- Laplacian systems with p-linear nonlinearity. Some sufficient conditions for the existence of periodic solutions are obtained by using the saddle point theorem in critical point theory, and the results improved the existing ones.
作者 张申贵
出处 《河北科技师范学院学报》 CAS 2012年第3期28-33,62,共7页 Journal of Hebei Normal University of Science & Technology
基金 国家自然科学基金项目(项目编号:31260098) 西北民族大学中青年科研项目(项目编号:12XB38)
关键词 常微分p-Laplacian系统 周期解 临界点理论 ordinary differential p-Laplacian systems periodic solutions critical point theory
  • 相关文献

参考文献6

  • 1MAWHIN J, WILLEM M. Critical point theory and Hamiltonian systems [ M ]. New York: Springer-Verlag, 1989.
  • 2TANG Chunlei. Periodic solutions for second order systems with sublinear nonlinearity [ J ]. Proc Amer Math Soc, 1998, 126:3 263-3 270.
  • 3MENG Qiong, TANG Xiahua. Solutions of a second order Hamiltonian systems [ J ]. Nonlinear Anal,2010,9:1 053-1 067.
  • 4HAN Zhiqing. Existence of periodic solutions of linear Hamiltonian systems with sublinear perturbation[ J ]. Boundary Val- ue Probiems ,2010,12 : 123-131.
  • 5ZHAO Fukun, WU Xian. Existence of periodic solutions for nonautonmous second order systems with linear nonlinearity [ J ]. Nonlinear Anal,2005,60 (7) : 325-335.
  • 6WANG Zhiyong,ZHANG Jihui. Periodic solutions of nonautomous second order systems with p-Laplacian [ J ]. Electronic J Differential Equations ,2009,15 : 1-12.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部