期刊文献+

基于并行遗传算法的水电站群中期优化调度 被引量:12

Midterm optimal operation based on parallel genetic algorithm for hydropower stations
下载PDF
导出
摘要 从水火电协调调度角度出发,提出了水电站群中期调峰出力最大模型。采用指数罚函数将模型目标的极大极小问题转化为可直接求解的无约束规划问题;结合遗传算法多种群的并行计算优势,构建粗粒度并行遗传算法,以提高求解效率和精度。乌江流域8座水电站的计算结果表明,所提模型能够在保证水电调峰的同时减少系统负荷变化对火电启停的影响,且粗粒度并行遗传算法能显著提高求解效率。 A midterm maximum peak load regulation model of hydropower stations is proposed from the perspective of coordinative operation of thermal and hydraulic power generation. The exponential penalty function is used to convert the minimax problem into the unconstrained programming problem to be solved directly,and the parallel computing advantage of multi-population genetic algorithm is integrated in the coarse-grained parallel genetic algorithm to increase the calculation efficiency and accuracy. The eomputative results for 8 hydropower stations in Wujiang river basin show that the proposed model mitigates the effect of system load change on the start-up and shut-down of thermal power plants while ensures the peak load regulation of hydropower stations. The coarse-grained parallel genetic algorithm improves the calculation efficiency significantly.
出处 《电力自动化设备》 EI CSCD 北大核心 2012年第12期87-91,共5页 Electric Power Automation Equipment
关键词 水电 中期 优化 指数罚函数 遗传算法 并行算法 模型 hydroelectric power midterm optimization exponential penalty function genetic algorithms parallel algorithms models
  • 相关文献

参考文献15

二级参考文献110

共引文献396

同被引文献215

引证文献12

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部