摘要
为了进一步优化混合动力汽车控制策略并降低冷起动阶段的排放,以热力学定律和汽油发动机平均值理论为依据,建立了发动机和三元催化器动力学模型。在此基础上,建立了整车在新欧洲城市循环工况(NEDC)下的冷起动排放仿真模型,分析了燃油补偿控制对空燃比和三元催化器效率的影响,并将仿真结果与发动机实车台架试验结果进行对比。结果表明:建立的混合动力汽车冷起动排放模型具有较好的准确度,HC排放误差为9.15%,CO排放误差为13.86%,燃油消耗误差为5.27%,试验结果为进一步优化整车控制策略提供了理论依据。
Aimed at the requirement of further optimization of hybrid electric vehicle's control strategy for decreasing emission during cold start,the engine and three way catalytic converter dynamic model were established based on the laws of thermodynamics and engine mean value theory.The emission model of hybrid electric vehicle during cold start in new European driving cycle was established.The effect of fuel compensation control on air-fuel ratio and efficiency of three way catalytic converter was analyzed.The simulation results were compared with the engine bench test results.The results show that the transient emission model of the hybrid electric vehicle during cold start is more accurate.The HC emission error is 9.15%,CO emission error is 13.86% and fuel consumption error is 5.27%.Theoretical reference of control strategy for further optimization can be provided by the model.
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2012年第6期147-153,共7页
China Journal of Highway and Transport
基金
国家高技术研究发展计划("八六三"计划)重大专项项目(2006AA11A107)
重庆市重大科技攻关项目(CSTC2008AA6025)
中央高校基本科研业务费专项资金项目(CDJRC10110006)
关键词
汽车工程
混合动力汽车
仿真与试验
排放
automotive engineering
hybrid electric vehicle
simulation and experiment
emission