期刊文献+

1-芘丁酸/石墨烯复合物的电化学性质及其在葡萄糖传感器上的应用(英文) 被引量:1

The Electrochemical Properties of 1-Pyrenebutyric Acid/Graphene Composites and Their Application in Glucose Biosensors
下载PDF
导出
摘要 本文采用一步法制备了1-芘丁酸/石墨烯复合物(PBA/G),并研究了它的电化学性质.采用铁氰化钾和亚铁氰化钾电化学探针测定了其电化学阻抗滴定曲线,确定了PBA/G的表观pKa为6.2.此外,将葡萄糖氧化酶(GOD)共价键合在PBA/G表面构建了葡萄糖电化学传感器,其电化学响应与葡萄糖浓度(5 mmol.L-1浓度范围内)呈线性关系,检测限为0.085 mmol.L-1.实验还测定了固定在PBA/G表面的GOD的表观米氏常数为5.40mmol.L-1,表明固定化的GOD对葡萄糖有较高的催化活性. The electrochemical properties of 1-pyrenebutyric acid/graphene composites (PBA/G) obtained by one-step synthesis via π-π stacking was investigated.The electrochemical impedance titration curve shows the surface charge changes as function of solution pH by using ferricyanide/ferrocyanide redox couple as the probe.An apparent pK a value is estimated as 6.2 according to the impedance titration curve.In addition,a glucose biosensor was constructed by immobilizing glucose oxidase (GOD) on the surface of PBA/G via covalent interaction.This biosensor shows a linear response to glucose within the concentration up to 5 mmol.L -1 with a detection limit of 0.085 mmol.L -1 .A small apparent Michaelis-Menten constant (5.40 mmol.L -1 ) of the immobilized GOD suggests that the immobilized GOD retains its bioactivity and shows high catalytic activity to glucose.
出处 《电化学》 CAS CSCD 北大核心 2012年第5期450-456,共7页 Journal of Electrochemistry
基金 supported by the National 973 Basic Research Program(No.2012CB933804) the National Natural Science Foundation of China(No.21035002,No.21121091) the Natural Science Foundation of Jiangsu province(No.BK2010009)
关键词 1-芘丁酸 石墨烯 葡萄糖氧化酶 电化学生物传感器 葡萄糖 1-pyrenebutyric acid graphene glucose oxidase electrochemical biosensor glucose
  • 相关文献

参考文献26

  • 1Stoller M D, Park S, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.
  • 2Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.
  • 3Zhou M, Zhai Y M, Dong S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide [J]. Analytical Chemistry, 2009, 81 (14): 5603-5613.
  • 4Lee H, Ihm J, Cohen M L, et al. Calcium-decorated graphene-based nanostructures for hydrogen storage [J]. Nano Letters, 2010, 10(3): 793-798.
  • 5Gilje S, Han S, Wang M S, et al. A chemical route to graphene for device applications[J]. Nano Letters, 2007, 7(11): 3394-3398.
  • 6Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.
  • 7Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons [J]. Journal of the American Chemical Society, 2011, 133 (12): 4168-4171.
  • 8Zeng Q, Cheng J S, Tang L H, et al. Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing[J]. Advanced Functional Materials, 2010, 20(19): 3366-3372.
  • 9Zhang Q, Qiao Y, Hao F, et al. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis[J]. Chemistry-A European Journal, 2010, 16(27): 8133-8139.
  • 10Kang X H, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing[J]. Biosensors and Bioelectronics, 2009, 25(4): 901-905.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部