期刊文献+

碳纳米粒子支撑的钯纳米催化剂在甲酸氧化中的电催化活性(英文)

Electrocatalytic Activity of Palladium Nanocatalysts Supported on Carbon Nanoparticles in Formic Acid Oxidation
下载PDF
导出
摘要 采用化学还原法制备了碳纳米粒子支撑的钯纳米结构(Pd-CNP).透射电镜表征显示在Pd-CNP纳米复合物中,金属Pd呈菜花状结构,粒径约20~30 nm.它们由许多更小的Pd纳米粒子(3~8 nm)组成.电化学研究表明,Pd-CNP的电化学活性面积比商业Pd黑低40%,可能原因是部分Pd表面被一层碳纳米粒子覆盖,但其对甲酸氧化却表现出更好的电催化活性,质量比活性和面积比活性都比Pd黑高几倍.催化活性增强的原因可能是碳纳米粒子支撑的Pd纳米结构具有特殊的层次化结构,可以形成更多的活性位,以及表面位更利于反应进行. Palladium nanostructures were deposited onto carbon nanoparticle surface by a chemical reduction method. Transmission electron microscopic studies showed that whereas the resulting metal-carbon (Pd-CNP) nanocomposites exhibited a diameter of 20 to 30 nm, the metal components actually showed a cauliflower-like surface morphology that consisted of numerous smaller Pd nanoparticles (3 to 8 run). Electrochemical studies showed that the effective surface area of the Pd-CNP nanoparticles was about 40% less than that of Pd black, possibly because the Pd nanoparticles were coated with a layer of carbon nanoparticles; yet, the Pd-CNP nanocomposites exhibited marked enhancement of the electrocatalytic activity in formic acid oxidation, as compared to that of Pd black. In fact, the mass- and surface-specific activities of the former were about three times higher than those of the latter. This improvement was likely a result of the enhanced accessibility of the Pd catalyst surface and the formation of abundant active sites of Pd on the carbon nanoparticle surface due to the hierarchical structure of the metal nanocatalysts.
出处 《电化学》 CAS CSCD 北大核心 2012年第6期508-514,共7页 Journal of Electrochemistry
基金 supported,in part,by the National Science Foundation(CHE-1012256 and DMR-0804049) by the ACS-Petroleum Research Fund(49137-ND10) J.Huang was supported,in part,by a research fellowship from the China Scholarship Council performed as a User Project at the National Center for Electron Microscopy,Lawrence Berkeley National Laboratory,which is supported by the US Department of Energy
关键词 钯纳米结构 碳纳米粒子 甲酸电氧化 燃料电池 palladium nanostructure carbon nanoparticle formic acid oxidation fuel cell
  • 相关文献

参考文献27

  • 1Liu H S, Song C J, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources, 2006, 155(2): 95-110.
  • 2Yu X W, Pickup P G. Recent advances in direct formic acid fuel cells (DFAFC)[J]. Journal of Power Sources, 2008, 182(1): 124-132.
  • 3Rhee Y W, Ha S Y, Masel R I. Crossover of formic acid through Nation membranes [J]. Journal of Power Sources, 2003, 117(1/2): 35-38.
  • 4Sun S G, Clavilier J, Bewick A. The mechanism ofelec- trocatalytic oxidation of formic acid on Pt(100) and Pt (i I 1) in sulphuric acid solution: An emirs study[J]. Jour- nal of Electroanalytical Chemistry, 1988, 240(1/2): 147-159.
  • 5Osawa M, Komatsu K, Samjeskf G, et al. The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum[J]. Angewandte Chemie-Intemational Edition, 2011, 50(5): 1159-1163.
  • 6Zhou W P, Lewera A, Larsen R, et al. Size effects in electronic and catalytic properties of unsupported palla- dium nanoparticles in electrooxidation of formic acid[J]. Journal of Physical Chemistry B, 2006,110(27): 13393-13398.
  • 7Zhou W J, Lee J Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid[J]. Journal of Physical Chemistry C, 2008, 112(10): 3789-3793.
  • 8Vidal-Iglesias F J, Solla-Gullon J, Herrero E, et al. Pd adatom decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation [J]. Ange- wandte Chemie-International Edition, 2010, 49 (39): 6998-7001.
  • 9Meng H, Wang C, Shen P K, et al. Palladium thorn clus- ters as catalysts for electrooxidation of formic acid [J]. Energy & Environmental Science 2011, 4(4): 1522-1526.
  • 10Zhou Z Y, Kang X W, Song Y, et al. Butylphenyl-func- tionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid [J]. Chemical Communications, 2011, 47(21): 6075-6077.

二级参考文献47

  • 1A. Cuesta, A. Couto, A Rincon, M. C. Perez, A. Lopeze- Cudero, and C. Gutierrez, J. Electroanal. Chem. 586, 184 (2006).
  • 2S. Z. Zou, R. Gomez, and M. J. Weaver, J. Electroanal. Chem. 474, 155 (1999).
  • 3SI Z. Zou, R. Gomez, and M. J. Weaver, Langmuir 15, 2931 (1999).
  • 4S. Z. Zou, R. Gomez, and M. J. Weaver, Surf. Sci. 39U, 270 (1998).
  • 5R. Gomez, J. M. Feliu, A. Aldaz, and M. J. Weaver, Surf. Sci. 410, 48 (1998).
  • 6T. Vidakovic, M. Christov, and K. Sundmacher, Electrochim. Acta 52, 5606 (2007).
  • 7L. F. de Mello, F. B. Noronha, and M. Schmal, J. Catal. 220, 358 (2003).
  • 8G. L. Chiarello, D. Ferri, J. D. Grunwaldt, L. Forni, and A. Baiker, J. Catal. 252, 137 (2007).
  • 9G. Denuault, C. Milhano, and D. Pletcher, Phys. Chem. Chem. Phys. 7, 3545 (2005).
  • 10J. C. Chen, F. Y. Chang, and M. Y. Wey, Catal. Commun. 9, 1106 (2008).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部