期刊文献+

聚类与关联规则在信息舞弊识别中的应用

The Application of Clustering and Associate Rule Mining to Fraud Information Identification
下载PDF
导出
摘要 针对现代电子数据迅速膨胀,传统的审计方式已经无法应对海量的业务数据,试图将数据挖掘中的聚类和关联规则算法引入审计领域.在研究聚类与关联规则算法的含义及相关算法—K-Means和Apriori算法的基础上,提出了一种基于聚类与关联规则的审计模型,并以某市城镇医疗保险的审计为例,首先利用聚类分析进行数据筛选,然后利用关联规则挖掘海量数据之间潜在的关系,为审计提供线索.文章通过案例分析为数据挖掘在信息舞弊识别领域的应用提供参考. Considering that with the rapid expansion of electronic data, the traditional audit approachs can not cope with vast business data, this paper intend to introduce the Clustering and Association Rule Mining in the audit fields. Based on the study of the meaning of Clustering and Association Rule Mining and their Algorithm--K-Means and Apriori, this article proposed an audit model which is based on the Clustering and Association Rule Mining, at the same time, taking the audit of medical insurance of some a city as an example, it detailed first how to use the Clustering to filter data, then how to mining the potential relationships in vast data so as to determine the audit priorities and audit clues.Through the case, the article is committed to provide a reference for the application of data mining in the fraud information identification.
出处 《计算机系统应用》 2012年第12期149-152,共4页 Computer Systems & Applications
关键词 信息舞弊 关联规则 APRIORI算法 聚类 K-MEANS 数据挖掘 审计 fraud indormation association rule mining apriori clustering K-means data mining audit
  • 相关文献

参考文献3

二级参考文献29

  • 1(加)HanJ KamberM 范明 盂小峰 等译.数据挖掘概念与技术m[M].北京:机械工业出版社,2001.223-262.
  • 2..http://lib, slat. Cmu. Edu/datasets/places. Data,.
  • 3Forgy E. Cluster analysis of multivariate data: Efficiency vs. interpretabillty of classifications[ M]. Biometrics, 1965, 21(3) : 768.
  • 4MacQueen J. Some methods for classlfication and analysis of multivariate observations[ A]. Proceedinss of the Fifth Berkeley Symposium on Mathematical Statistics and Probability[ C]. Volume 1. Le-Cam LM, Neyman N, Ed. University of California Press, 1967.
  • 5Duda RO, Hart PE. Pattern Classification and Scene Analysis[ M].New York: John Wiley and Sons, 1973.
  • 6Selim SZ, Alsultan K. A Simulated Annealing Algorithm for the Clustering Problem[J]. Pattern Recognition, 1991, 24(10): 1003- 1008.
  • 7Fayyad U, Reina C, Bradley PS. Initialization of Iterative Refinement Clustering Algorithms[ R]. Microsoft Research Technical Report MSR-TR-98-38, June 1998.
  • 8Selim SZ, Ismail MA. K-Means-Type Algorithms: A Generalized Convergence Theorem and Charadterization of Local Optimality[ M].IEEE Trans Pattern Analysis and Machine Intelligence, 1984, PA-MI-6(1).
  • 9Kaufman L, Rouseeuw P. Finding Groups in Data: An Introduction to Cluster Analysis[ M]. New York : John Wiley and Sons, 1990.
  • 10Alsabti K, Ranks S, Singh V. An Efficient K-Means Clustering Algorithm[ A]. Proc. First Workshop on High-Performance Data Mining[C], 1997.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部