期刊文献+

基于高斯混合模型的遥感信息提取方法研究

Method for Extraction of Remote Sensing Information Based on Gaussian Mixture Model
下载PDF
导出
摘要 高斯混合模型(Gaussian mixture model,GMM)可以描述遥感数据的概率密度函数,通过估计各高斯分布的参数,计算后验概率,实现信息提取。为了提高利用GMM进行遥感信息提取的准确度,首先在GMM中使用马尔科夫随机场(Markov random field,MRF)计算各像元邻域内各类地物的先验概率,代替各类地物的混合概率,使其反映出各类地物的空间相关性;然后在参数估计过程中利用模拟退火(simulated annealing,SA)思想获得全局最优的参数估计值;最后利用该参数估计值求出每个像元对于各类地物的后验概率,获得各类地物的空间分布。通过对遥感实验场的图像数据进行信息提取,发现所述新方法取得了更好的效果,证明了上述改进的有效性。 Gaussian mixture model(GMM) is used to describe the probability density function of remote sensing data.According to the process of parameter estimation and the calculation of posterior probability,remote sensing information extraction can be realized.For the purpose of improving the accuracy of the extraction by GMM,Markov Random Field(MRF) is applied to calculate the prior probability of each feature in the pixel's neighborhood to replace the mixing probability of the feature,and spatial correlation is reflected by this way.Then simulated annealing(SA) is utilized for the acquisition of overall optimum estimation of parameters.With the parameters,posteriori probability for every feature of each pixel is computed and the distribution of features is obtained.Extracting information from the images obtained from the remote sensing test site reveals that the new method has a better performance,thus proving the effectiveness of the above-mentioned improvements.
出处 《国土资源遥感》 CSCD 北大核心 2012年第4期41-47,共7页 Remote Sensing for Land & Resources
关键词 高斯混合模型(GMM) 期望最大化(EM)算法 模拟退火(SA) 马尔科夫随机场(MRF) 遥感信息提取 Gaussian mixture model(GMM) expectation maximization(EM)algorithm simulated annealing(SA) Markov random field(MRF) remote sensing information extraction
  • 相关文献

参考文献11

  • 1雷建军,杨震,刘刚,郭军.基于复高斯混合模型的鲁棒VAD算法[J].天津大学学报,2009,42(4):353-356. 被引量:2
  • 2Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real - time Tracking [ C ]. ICCV, 1999 : 246 - 252.
  • 3余鹏,封举富,童行伟.一种新的基于高斯混合模型的纹理图像分割方法[J].武汉大学学报(信息科学版),2005,30(6):514-517. 被引量:6
  • 4Besag J. On the Statistical Analysis of Dirty Pictures[ J]. Journal of the Royal Statistical Society, Series B ( Methodological ), 1986,48 (3) :259 -302.
  • 5Dempster A P, Laird N M, Rubin D B. Maximum Likelihood for In- complete Data Via the EM Algorithm [ J ]. Journal of the Royal Sta- tistical Society, Serious B ( Methodological ), 1977,39 : 1 - 38.
  • 6Mclanchlan G J. The EM Algorithm and Extension [ M ]. New York : Wily & Sons, 1997.
  • 7Sanjay G S, Thomas J H. Bayesian Pixel Classification Using Spa- tially Variant Finite Mixtures and the Generalized EM Algorithm [ J]. IEEE Transactions on Image Processing, 1998,7 (7) : 1014 - 1028.
  • 8Hammersley J M, Cliford P. Markov Field on Finite Graphs and Lattices [ Z ]. Unpublished manuscript, 1971.
  • 9Peter J M L, Emile H L A. Simulated Annealing:Theory and Appli- cations [ M ] Dordrecht, Holland : ReidelPub, 1987.
  • 10Geman S, Gemini D. Stochastic Relaxation, Gibes Distributions, and the Bayesian Restoration of Images [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 1984,6 (6) :721 - 741.

二级参考文献28

  • 1彭玉华.小波变换与工程应用[M].北京:科学出版社,2000..
  • 2ITU. A Silence Compression Scheme for G.729 Optimized for Terminals Conforming to Recommendation V.70 [S]. ITU-T Recommendation G.729-Annex B, 1996.
  • 3Woo K,Yang T ,Park K ,et al. Robust voice activity detection algorithm for estimating noise spectrum[J]. Electronics Letters,2000,36 (2) : 180-181,
  • 4Junqua J C,Reavers B,Mark B. A study of endpoint detection algorithms in adverse conditions:Incidence on a DTW and HMM recognize[C]//Proceedings of Eurospeech. Genova,Italy, 1991 : 1371-1374.
  • 5Shen Jialin,Hung J W,Lee Linshan. Robust entropy- based endpoint detection for speech recognition in noisy environments [C]// Proceedings of ICSLP. Sydney , Australia, 1998:232-235.
  • 6Jia Chuan,Xu Bo. An improved entropy-based endpoint detection algorithm [C]// Proceedings of ISCSLP. Taiwan, China, 2002 :96-99.
  • 7Rabiner L R, Sambur M R. Voiced-unvoiced-silence detection using the Itakura LPC distance measure [C]// Proceedings of lCASSP. 1977:323-326.
  • 8Haigb J A,Mason J S. Robust voice activity detection using cepstral feature [ C ] // Proceedings of IEEE TELCON. China, 1993:321-324.
  • 9Elias N,Rafik G,Samy M. Robust voice activity detection using higher-order statistics in the LPC residual domain[J]. IEEE Trans on Speech and Audio Processing,2001,9 (3) :217-231.
  • 10Shin W H,Lee B S,Lee Y H,et al. Speech/non-speech classification using multiple features for robust endpoint detection [C] // Proceedings oflCASSP. Istanbul, Turkey, 2000 : 1399-1402.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部