期刊文献+

Lipschitz条件下脉冲微分方程的解

Solutions to Impulse Differential Equations under Lipschitz Conditions
下载PDF
导出
摘要 研究Banach空间中非局部脉冲微分方程的解,在非局部项Lipschitz连续的条件下讨论微分方程适度解的存在性。主要利用Hausdorff非紧测度和不动点的方法,减弱这类问题的研究中对算子半群紧性的约束,在非紧半群条件下对脉冲函数紧性条件和Lipschitz条件做了统一处理,改进和推广了这一领域的相关结果。 This paper is concerned with the existence of nonlocal impulse differential equations under Lipschitz conditions in Banach spaces. By using the measure of non - compactness and fixed point theorem, the restric- tion on the compactness of operator semigroup is weakened. We deal with the cases of compactness and Lipschi- tz conditions for impulse functions in a unified way, which improves some related results in this area.
作者 嵇绍春 李刚
出处 《淮阴工学院学报》 CAS 2012年第5期6-10,共5页 Journal of Huaiyin Institute of Technology
基金 国家自然科学基金项目(10971182) 江苏省普通高校研究生科研创新计划项目(CXZZ12_0890) 江苏省高校自然科学研究项目(11KJB110018)
关键词 脉冲微分方程 非局部条件 非紧测度 不动点 适度解 impulse differential equations nonlocal conditions measure of non - compactness fixed - point mild solution
  • 相关文献

参考文献10

  • 1Benchohra M, Henderson J, Ntouyas S K. Impulsive Differential Equations and Inclusions [ M ]. New York : Hindawi Publishing Corporation, 2006.
  • 2Ji S C, Li G. Existence results for impulsive differential inclusions with nonlocal conditions[ J ]. Comput Math Appl,2011,62(4) :1908 - 1915.
  • 3Byszewski L. Theorems about the existence and uniqueness of a solution of a semilinear evolution nonlocal Cauchy problem [ J ]. J Math Anal Appl, 1991, 162 (2) :496 - 5051.
  • 4Xue X M. Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces[J]. Nonlinear Anal, 2009,70 (7) :2593 - 2601.
  • 5Liang J, Liu J H, Xiao T. Nonlocal Cauchy problems governed by compact operator families [ J ]. Nonlinear Anal, 2004,57 (2) :183 -189.
  • 6嵇绍春,李刚.非局部条件下脉冲微分方程的适度解[J].扬州大学学报(自然科学版),2010,13(1):13-16. 被引量:5
  • 7Banas J, Goebel K. Measure of Noncompactness in Banach spaces, Lecture Notes in Pure and Applied Math [ M ]. New York : Dekker, 1980.
  • 8Kamenskii M, Obukhovskii V, Zecca P. Condensing Muhivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser, Nonlinear Anal Appl [ M ]. Berlin : De Gruyte,2001.
  • 9嵇绍春,李刚.非局部条件下半线性微分方程的适度解[J].数学的实践与认识,2009,39(22):179-184. 被引量:3
  • 10Monch H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces [ J ]. Nonlinear Anal, 1980,4 (5) : 985 - 999.

二级参考文献22

  • 1李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报(中文版),2005,48(6):1089-1094. 被引量:66
  • 2Byszewski L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem[J]. J Math Anal Appl, 1991, 162: 494-505.
  • 3Byszewski L, Akca H. Existence of solutions of a semilinear functional differential evolution nonlocal problem[J]. Nonlinear Anal, 1998,34 : 66-72.
  • 4Liang J, Liu J, Xiao T. Nonlocal Cauchy problems governed by compact operator families[J]. Nonlinear Anal, 2004, 57: 183-189.
  • 5Fan Z, Dong Q, Li G. Semilinear differential equation with nonlocal conditions in Banach spaces [J]. Inter J Nonlinear Sci, 2006, 2(3): 131-139.
  • 6Banas J, Goebel K. Measure of Noncompactness in Banaeh Spaces[M]. New York: Dekker, 1980.
  • 7Bothe D. Multivalued perturbations of m-accretive differential inclusions[J].Isreal J Math, 1998, 108.. 109-138.
  • 8Heinz H P. On the behavior of measure of noneompactness with respect of differentiation and integration of vector valued funetions[J]. Nonlinear AnalTMA, 1983, 7: 1351-1371.
  • 9Martin R H. Nonlinear Operators and Differential Equations in Banaeh Spaces[M].New York: John Wiley, 1987.
  • 10LIANG Jin, LIU James H, XIAO Ti j un. Nonlocal impulsive problems for nonlinear differential equations in Banach spaces [J]. Math Comput Model, 2009, 49(3/4): 798-804.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部