摘要
将二次曲面模型和BP神经网络的组合模型应用于高程异常拟合中,其组合方式分别基于方差倒数法和广义回归神经网络。利用某地区实测的GPS高程数据进行比较分析,结果表明,组合模型逼近高程异常的精度和可靠性均优于单一模型,并且基于广义回归神经网络的组合模型的拟合精度高于基于方差倒数法的组合模型。
The combined model based on the quadratic surface model and BP neural network model is applied to the GPS height anomaly fitting, while the combination is determined from the variance reciprocal method and general regression neural network (GRNN). The GPS elevation data in a certain area is used, the results show that both the accuracy and reliability with the combined model are more superior to the single models, and the fitting ac- curacy with the combined model based on general regression neural network (GRNN) is better than that with the combined model based on the variance reciprocal method.
出处
《大地测量与地球动力学》
CSCD
北大核心
2012年第6期103-105,110,共4页
Journal of Geodesy and Geodynamics
基金
国家自然科学基金(U1231105
10878026)
关键词
二次曲面模型
BP神经网络模型
高程异常
广义回归神经网络
方差倒数法
quadratic surface model
BP neutral network model
height anomaly
general regression neural network
variance reciprocal method