期刊文献+

航站楼旅客群体性事件预警监控系统架构及关键技术 被引量:6

Architecture and key technology of an early warning and monitoring system for mass events in terminal
下载PDF
导出
摘要 针对航站楼旅客群体性事件的智能化预警问题,在民用机场航站楼内的现有视频监控系统的基础上,提出旅客群体性事件预警监控系统架构和关键技术。针对航站楼内的视频监控系统的视频数据进行预处理;基于空间聚类算法,从图像中提取人群聚集特征;针对目标监控区域的历史视频和突发事件数据进行统计分析,研究正常和非正常两种情况下的人群分布特征,并建立相应的预警规则库;根据预警规则,在人群聚集特征识别的基础上,对非正常目标密集人群进行识别。该系统可根据航站楼旅客群集性事件的时空特性,针对不同事件、不同时间、不同地点采用不同的规则进行预警,提高了预警的可靠性。 The architecture of an early warning and monitoring system for mass events in terminal was constructed on foundation of terminal video surveillance system in civil airports. The system preprocessed video data of the sur- veillance system and extracted the accumulation features of crowds on spatial clustering algorithm. History videos and emergency data of monitored area were analyzed statistically, besides, crowd distribution trends in both normal and abnormal situations were studied. Based on above work, an early warning rules library was built. The system was able to recognize abnormal dense crowds with the help of previous rules and crowds feature recognitions. Final- ly, different crowd events in different time and different locations were pre-warned under different rules, based on characteristics of time and space of crowd events in terminal.
出处 《中国安全生产科学技术》 CAS 2012年第11期55-59,共5页 Journal of Safety Science and Technology
基金 国家自然科学基金(编号:91024024)项目资助 江苏省自然科学基金(编号:BK2012389) 中央高校基本科研业务费专项资金(编号:kfjj20110233)
关键词 航站楼 视频监控 人群密度 预警 群体性事件 terminal monitoring density of crowds early-warning mass event
  • 相关文献

参考文献11

二级参考文献35

  • 1皋军,王建东.一种基于模糊理论和条件熵的属性近似约简的方法[J].计算机工程与应用,2004,40(21):182-184. 被引量:3
  • 2魏芳,李学明.H.264中整数余弦变换和周期量化的原理与分析[J].计算机应用研究,2004,21(12):26-28. 被引量:5
  • 3李洛,张剑.基于整数变换的H.264标准量化过程[J].计算机应用研究,2006,23(5):31-33. 被引量:4
  • 4张书兵 等.Visual Basic 6.0中文版入门与提高[M].清华大学出版社,1999-06..
  • 5Nanda S.Fuzzy rough sets[J].Fuzzy sets and systems,1992,4.
  • 6Baneriee M Palsk.Roughness of Fuzzy sets[J].Inform Sci, 1996 ; 3 ( 11 ).
  • 7[1]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking[A]. Proc IEEE Conf on Computer Vision and Pattern Recognition[C].Colorado, 1999. 246-252.
  • 8[2]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video[A]. Proc IEEE Workshop on Applications of Computer Vision[C]. Princeton, 1998. 8-14.
  • 9[3]Bobick A, Davis J. The representation and recognition of action using temporal templates[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267.
  • 10[4]Isaac Cohen, Gérard Medioni. Detecting and tracking moving objects for video surveillance[A]. IEEE Proc Computer Vision and Pattern Recognition[C]. Fort Collins, 1999. 2319-2325.

共引文献66

同被引文献30

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部