期刊文献+

基于分布式偏好理论的Luce-Suppes难题之消解 被引量:1

Resolution of Luce-Suppes Puzzle Based on Distributed Preference Theory
下载PDF
导出
摘要 传统选择理论因偏好关系的传递性会在实际的选择中面临诸多挑战而遭到质疑,Luce-Suppes难题便是其中的一个有名反例,这足以使传统选择理论离实际的选择越来越远。其实,传统选择理论并没有区分直接的偏好与间接的偏好,这正是其弱点所在。在分布式偏好理论架构下,行动主体做出选择时,分布式偏好(间接偏好)与表达性偏好(直接偏好)都要被考虑且具有不同的作用,质疑传递性的Luce-Suppes难题不再具有挑战性,且能够被分布式偏好合理地解释或消解。其他的一些疑难也能够予以化解,行动主体选择的做出重又回归到了理性的法则之上。 Traditional choice theory has been questioned because transitivity of preference in practical choice faces challenges. Luce-Suppes Puzzle is one of the well-known counter-examples, which makes traditional choice theory deviate from practical choice increasingly. In fact, it is a weakness that traditional choice theory could not distinguish direct preference from indirect one. Under the frame of distributed preference theory, when agent makes a choice, distributed preference (indirect preference ) and expressed preference (direct preference ) are both taken into consideration and have different functions. Luce-Suppes Puzzle questioning transitivity is not a challenge any more, and can be rationally explained or resolved by distributed preference. Other puzzles can also be resolved. Thus, agent' s choice will be based on the principle of rationality again.
作者 王志远
出处 《天津商业大学学报》 2012年第6期39-43,共5页 Journal of Tianjin University of Commerce
基金 国家社会科学基金项目(11CZX028) 广西民族师范学院引进人才资助项目(XYYJ2010002)
关键词 分布式偏好 Luce—Suppes难题 行动逻辑 决策逻辑 偏好 distributed preference Luce-Suppes Puzzle logic of action logic of decision preference
  • 相关文献

参考文献23

  • 1Fishburn P C. Utility Theory for Decision Making [ M ]. Mala- bar: Robert E. Krieger Publishing Company, 1979:15.
  • 2Luce R D. Semiorders and a Theory of Utility Discrimination [ J ]. Econometrica, 1956(24): 178-191.
  • 3Luce R D, Raiffa H. Games and Decisions [ M1. New York: Wiley, 1957 : 61 -68.
  • 4Armstrong W E. Utility and the Theory of Welfare [ J 1. Oxford Economic Papers, 1951 (3) : 259 -271.
  • 5Weinstein A A. Individual Preference Intransitivity [ J]. South- em Economic Journal, 1968(34) : 335 -343.
  • 6Condorcet M de. Essai sur LApplication de LAnalyse t la Ptbabilit6 des Decisions Rendues tt la Pluralit6 des Voix [ M ]. Paris : De Limprimerie Royale, 1785.
  • 7Wang Z Y. Existence of Satisfied Alternative and the Occurring of Morph-Dictator [ C]// Xiandong H, John H, Eric P. Pro- ceedings of Second Logic, Rationality, and Interaction. Heidel- berg: Soriner-Verla. 2009:327 -328.
  • 8王志远.TESA及其在孔多塞选择中的应用[J].天津商业大学学报,2010,30(1):51-55. 被引量:3
  • 9Arrow K J. Social Choice and Individual Values [ M ]. New York: Wiley, 1963:2 -5.
  • 10May K O. Intransitivity, Utility and the Aggregation of Preference Patterns [J]. Econometrica, 1954(22): 1-3.

二级参考文献24

  • 1Fishburn P C. Utility Theory for Decision Making[ M]. Malabar: Robert E. Krieger Publishing Company,1979.
  • 2Basu K. Fuzzy Revealed Preference Theory [ J ]. Journal of Economic Theory, 1984,32:212 - 227.
  • 3Barrett C R, Pattanaik P K, Salles M. On Choosing Rationally When Preferences are Fuzzy [ J ]. Fuzzy Sets and Systems, 1990, 34:197 -212.
  • 4Hwang C L, Lin M L Group Decision Making Under Multiple Criteria: Methods and Applications [ M ]. Berlin: Springer- Verlag, 1987.
  • 5Cheng C B. Group Opinion Aggregation Based on a Grading Process: a Method for Constructing Triangular Fuzzy Numbers [ J ]. Computers and Mathematics with Applications, 2004,48 : 1619 - 1632.
  • 6De Baets B, De Walle B V, Kerre E. Fuzzy Preference Structures Without Incomparability [J]. Fuzzy Sets and Systems, 1995,76 : 333 - 348.
  • 7Feldman A M, Serrano R. Welfare Economics and Social Choice Theory [ M ]. Heidelberg: Springer,2006.
  • 8Dasgupta M, Deb R. Factoring Fuzzy Transitivity [ J ]. Fuzzy Sets and Systems ,2002,118:489 - 502.
  • 9Tanaka Y. On the Equivalence of the Arrow Impossibility Theorem and the Brouwer Fixed Point Theorem [ J ]. Applied Mathematics and Computation ,2006,172:1303 - 1314.
  • 10Young H P. Condorcet' s Theory of Voting [ J ]. American Political Science Review, 1988,82 : 1231 - 1244.

共引文献4

同被引文献14

  • 1王志远.模糊偏好的形成机制研究[D].南京:南京大学,20lO.
  • 2Fishburn P C. Utility Theory for Decision Making [ M ] Mala- bar: Robert E. Krieger Publishing Company, 1979: 15.
  • 3Luce R D. Semiorders and a Theory of Utility Discrimination [J]. Econometrica, 1956(24) : 178 - 191.
  • 4Lute R D, Raiffa H. Games and Decisions [ M ]. New York: Wiley, 1957 : 61 -68.
  • 5Armstrong W E. Utility and the Theory of Welfare [ J ]. Oxford Economic Papers, 1951 (3) : 259 -271.
  • 6Weinstein A A. Individual Preference Intransitivity [ J ]. South- em Economic Journal, 1968(34) : 335 -343.
  • 7May K O. Intransitivity, Utility and the Aggregation of Preference Patterns [J]. Econometrica, 1954(22) : 1 -3.
  • 8Tversky A. Intransitivity of Preferences [ J ]. Psychology Re- view, 1969(76) : 31 -48.
  • 9Schwartz T. Rationality and the Myth of the Maximum [ J ]. No~s, 1972(2) : 97 - 117.
  • 10van dcr Hoek W, Meyer J J Ch. Group Knowledge is not Always Distributed ( Neither Is It Always Implicit) [ J ]. Mathematical Social Sciences, 1999(38) : 215 -240.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部