期刊文献+

多目标优化算法在多分类中的应用研究 被引量:7

Research of Multi-Objective Optimization Algorithms′ Application in Multi-Class Classification
下载PDF
导出
摘要 Cai等人用多目标粒子群算法(MOPSO)优化多目标聚类学习和分类学习框架(MSCC)的多目标问题时,种群只能得到少量的非支配解,不利于种群优化.而在此情况下,NSGA-Ⅱ由于采用了Pareto排序的方法,种群中会保留大量优秀的支配解,有利于种群优化,所以本文引进了NSGA-Ⅱ优化MSCC框架的多目标问题.通过对数据集的测试,验证了在NSGA-Ⅱ的优化下,对于大多数测试问题,MSCC框架设计的分类器的最大分类正确率高于MOPSO优化MSCC框架的结果.进而对实验结果做了进一步分析,发现了最大正确率不随多目标优化算法的优化过程而提高的问题. When Multi-objective Particle Swarm Optimization(MOPSO) optimizes the multi-objective problems of the multiobjective simultaneous learning framework(MSCC),there are only a few nondominated solutions in MOPSO population.In this case,NSGA-II can keep a lot of good dominated solutions in the population,which will help the population optimize,so this paper brought in NSGA-II as the optimization algorithm.The results of experiments show that,under the optimization of NSGA-II,MSCC framework can get better multi-class classifiers.However,dominated solutions can get better classifiers than nondominated solutions.By observing the changing curves of the maximum classification accuracy rate following with the optimization of populations,this paper found that,when dealing with most of the data sets,the maximum accuracy is not improved following the optimization of populations.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第11期2264-2269,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61001202 No.61072139 No.61003199) 中国博士后科学基金(No.201104658 No.20090451369 No.20090461283) 陕西省自然科学基础研究计划(No.2010JQ8023 No.2011JQ8010) 国家教育部博士点基金(No.20100203120008 No.20090203120016 No.200807010003) 高等学校学科创新引智计划(No.B07048) 教育部"长江学者和创新团队发展计划"(No.IRT1170)
关键词 多分类 多目标优化 聚类 MOPSO NSGA-Ⅱ multi-class multi-objective optimization cluster MOPSO NSGA-II
  • 相关文献

参考文献18

  • 1R Tagliaferri,A Staiano,D Scala. A supervised fuzzy clustering for radial basis function neural networks 'aining[ A]. Joint 9th IFSA World Congress and 20th NAFIPS International Confer- ence[ C] .USA: IEEE Press,2001.3 : 1804- 1809.
  • 2Y J Oyang,S C Hwang,Y Y Ou,C Y Chen,Z W Chen. Data classification with radial basis function networks based on a novel kernel density estimation algorithm L J ]. 1EEE Transac- tions on Neural Networks,2005,16(1) :225 - 236.
  • 3I Maglogiannis, H Sarirnveis, C T Kiranoudis. A Chatzfi'oan- nou, N Oikonomou, V Aidinis. Radial basis function neural net- works classification for the recognition of idiopathic pulmonary fibrosis in microoscopic images[ J .IEEE Transactions on In- formation Technology in Biomedicine, 2008,12( 1 ) :42 - 54.
  • 4米爱中,郝红卫,郑雪峰,涂序彦.一种自整定权值的多分类器融合方法[J].电子学报,2009,37(11):2604-2608. 被引量:9
  • 5连可,黄建国,王厚军,龙兵.一种基于遗传算法的SVM决策树多分类策略研究[J].电子学报,2008,36(8):1502-1507. 被引量:35
  • 6J Weston, C Walildns. Multi-class Support Vector Machines [ R]. Technical Report CSD-TR-98-04, May 20,1998:1 - 10.
  • 7李阳阳,石洪竺,焦李成,马文萍.基于流形距离的量子进化聚类算法[J].电子学报,2011,39(10):2343-2347. 被引量:16
  • 8J A K Suykens, J Vandewalle. Least squares support vector ma- chine classifiers[ J]. Neural Processing Letters, 1999,9 (3) : 293 - 300.
  • 9李昆仑,黄厚宽,田盛丰.模糊多类SVM模型[J].电子学报,2004,32(5):830-832. 被引量:21
  • 10周伟达,张莉,焦李成.自适应支撑矢量机多用户检测[J].电子学报,2003,31(1):92-97. 被引量:9

二级参考文献47

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 3连可,王厚军,龙兵.基于SVM的模拟电子系统多故障诊断研究[J].仪器仪表学报,2007,28(6):1029-1034. 被引量:20
  • 4张贤达 保铮.通讯信号处理[M].北京:国防工业出版社,2000.420-482.
  • 5Rahman A F R, Fairhurst M C. Multiple classifier decision combination strategies for character recognition: a review[ J ]. International Journal on Document Analysis and Recognition (IJDAR) ,2003,5(4): 166 - 194.
  • 6Jain A K, Duin R P W, Mao Jianchang. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22( 1 ) :4 - 37.
  • 7Altincay H,Demireklera M. Undesirable effects of output normalization in multiple classifier systems[ J]. Pattern Recognition Letters,2003,24(9- 10):1163- 1170.
  • 8Raudys s, Roli F. The behavior knowledge space fusion method: analysis of generalization error and strategies for performance improvement [A], Proceedings of 4th International Workshop on Multiple Classifier Systems (MCS) [C]. Lecture Notes in Computer Science (LNCS), Berlin: Springer-Verlag Press, 2003.2709.55 - 64.
  • 9Parker J R. Rank and response combination from confusion matrix data[J]. Information Fusion,2001,2(2) : 113- 120.
  • 10Kuncheva L l,Bezdek J C,Duin R P W. Decision templates for multiple classifier fusion.. An experimental comparison[ J]. Pattern Recognition,2001,34(2) :299 - 314.

共引文献83

同被引文献85

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 3韩湘,魏急波.一种MIMO系统中叠加导频的最优设计方法[J].电子学报,2007,35(4):732-735. 被引量:2
  • 4VALKEALAHTI K,PAKKINEN J, FLANAGAN A. WC- DMA common pilot power control with cost function mini- mization[ C]. in Proceeding of the 56th IEEE Vehicular Technology Conference,2002:2244-2247.
  • 5DUONG D V, QIEN G E. Optimal pilot spacing and power in rate-adaptive MIMO diversity systems with im- perfect CSI[J]. IEEE Transactions on Wireless Commu-nieations, 2007, 6 ( 3 ) : 845- 851.
  • 6GOLOVINS E, VENTURA N. Optimization of the pilot- to-data power ratio in the wireless MIMO-OFDM system with low-complexity MMSE channel estimation[J]. Com- puter Communications, 2009, 32(3):465-476.
  • 7ZHOU X G, LAMAHEWA T A, SADEGHI P. Two-way training: Optimal power allocation for pilot and data transmission[ J]. IEEE Transactions on Wireless Com- munications, 2010, 9 (2) :564-569.
  • 8SIOMINA I, YUAN D. Minimum pilot power for service coverage in WCDMA networks [ J ]. Wireless Networks, 2008, 14(3) :393-402.
  • 9JITVANICHPHAIBOOL K, SAQUIB M. Optimum pilot- to-data power ratio for partial RAKE receiver in Nakaga- mi-m fading channels [ J ]. IEEE Transactions on Wire- less Communications, 2009, 8( 1):136-147.
  • 10ZITZLER E, THIELE L. Multi-Objective evolutionary al- gorithms: A comparative case study and the strength Pa- reto approach. IEEE Trans. on Evolutionary Computa- tion, 1999, 3(4) :257-271.

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部