期刊文献+

一种自适应小生境分布性保持策略 被引量:4

An Adaptive Niche for Keeping the Diversity of Solutions in Multi-Objective Evolutionary Algorithm
下载PDF
导出
摘要 小生境技术被广泛应用在多目标进化的分布性保持方面.但是,小生境半径不易控制等限制了其在分布性保持等方面的发展.本文提出了一种自适应小生境分布性保持策略(Adaptive Niche,AN).AN通过对Pareto解集生成最小生成树来自适应调整小生境半径,同时扩大搜索小生境半径并改变计算方法使之能够识别小生境边沿的个体,便于对其修剪与评价.通过与NSGA-II,SPEA2在不同形状测试函数上进行对比实验,结果表明,AN能够对Pareto最优面进行高效地分布性保持. Niche is an effective and widely used diversity preservation technique in multi-objective evolutionary algorithms(MOEAs).However,it suffers from two feedbacks:the determination of niche radius is far from trivial and the fitness value evaluated by niche technique is too coarse to be reliable in some scenarios.This paper proposes an Adaptive Niche(AN) technique,in which the parameter value of niche radius can be automatically tuned according to the current population.Furthermore,the individuals locate on the niche boundary and inside are tackled differently,when evaluating the fitness value.Comprehensive experiments demonstrate the superiority of proposed AN,compared to several state-of-the-art MOEAs.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第11期2330-2335,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61070088) 湖南省教育厅重点科研项目(No.06A074)
关键词 多目标进化算法 分布性保持策略 小生境 最小生成树 multi-objective optimization diversity preserving niche minimum spanning tree
  • 相关文献

参考文献12

  • 1Li H,Zhang Q. Mulfiobjective optimization problems with com- plicated Pareto sets,MOF_A/D and NSGA-II I J]. 1EEE Trans- actions on Evolutionary Computation, 2009,13(2) ,284 - 302.
  • 2雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 3李朝伟,周希元,陈卫东,周一宇.单脉冲雷达主波束内多目标的检测方法[J].电子学报,2006,34(6):1026-1030. 被引量:12
  • 4李朝伟,王宏强,黎湘,庄钊文.一种改进的自适应多目标SHT检测方法[J].电子学报,2005,33(9):1629-1633. 被引量:1
  • 5Deb K, Gupta S, Daum D, Branke J, Mall A, Padmanabhan D. Reliability-based optimization using evolutionary algorithms I J]. EE Tramactiom on Evolutionary Computation, 2009, 13 (5) : 1054 - 1074.
  • 6李密青,郑金华,李珂.一种非均匀分布问题分布性维护方法[J].电子学报,2011,39(4):946-952. 被引量:4
  • 7Horn J, Nafpliotis N, Goldberg D. A niched pareto genetic al- gorithm for multiobjective optimization[ A]. Evolutionary Com- putation. IEEE, World Congress on Computational Intelligence, Proceedings of the First IEEE, Conference on [ C ]. Orlando Florida: IEEE XPLORE, 1994.82 - 8.
  • 8Kukkonen, S. & Laninen, J. GDE3: The third evolution step of generalized differential evolution[ A]. The 2005 1EF,E Congress on Evolutionary Computation[ C ]. Edinburgh: IEEE, XPLORE, 2005.1,443 - 450.
  • 9Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997,11(4) :341 - 359.
  • 10Schott J. Fault Tolerant Design Using Single and Multicritefia Genetic Algorithm Optimization [ M] .DTIC Document .Mas- sachusetts Institute of Technology: Dept. of Aeronautics and Astronaulics:Massachusetts Institute of Technology, 1995. 136 - 138.

二级参考文献46

  • 1雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 2Deb K. Multi-objective optimization using evolutionary algorithms [M].Chichester, UK: John Wiley & Sons, 2001.
  • 3Schaffer J D. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms [ D ]. Nashville: Vanderhilt University , PhD thesis, 1984.
  • 4Goldberg,D E. ,Richardson J. Genetic algorithms with sharing for multimodal function optimization [ A ]. Proceedings of the Second International Conference on Genetic Algorithms [ C]. Massachusetts, US:L Erlbaum Associates Inc, 1987,41 - 49.
  • 5Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II - JJ. IEEE Transactions on Evolutionary Computation, 2002,6(2) : 182 - 197.
  • 6Come D W, Jerram N R,KnowlesJ D,Oates M J,PESA-II:region-based selection in evolutionary multiobjective optimization [ A]. Proceedings of the Genetic and Evolutionary Computation Conference( GECCO' 2001 ) [ C ]. San Francisco, California: Morgan Kaufmann Publishers, 2001.283 - 290.
  • 7Zitzler E, Laumanrs M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [ R ]. Switzerland: TIK-Report 103, ETH,2001.
  • 8Fonseca, C M Fleming,P J. An overview of evolutionary algorithms in multi-objective optimization [ J ]. Evolutionary Computalion, 1995,3(1) : 1 - 16.
  • 9Deb K. Multi-objecave genetic algorithms:problem difficulties and construction of test problems [J].Evolutionary Computation, 1999,7(3) :205 - 230.
  • 10Deb K, TNele D, Laumanns M, Zitzler E. Scalable test problems for evolutionary multiobjective optimization [ A ]. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications [C ]. London: Springer- Verlag, 2005.105 - 145.

共引文献32

同被引文献110

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部