期刊文献+

姿态和光照可变条件下的仿射最小线性重构误差人脸识别算法 被引量:5

Affine Minimum Linear Reconstruction Error Face Recognition Under Varying Pose and Illumination
下载PDF
导出
摘要 传统人脸识别算法通常把光照处理和姿态校正作为两个相对独立的处理过程,难以取得全局最优识别性能.针对该问题,本文根据人脸的非刚体特性,将仿射变换和分块思想融入线性重构模型中,提出了一种基于仿射最小线性重构误差(Affine Minimum Linear Reconstruction Error,AMLRE)的人脸识别算法,在处理光照问题的同时能够补偿姿态变化造成的局部区域对齐误差,以获得更好的全局识别性能.在公共数据集上的实验结果表明,本文提出的算法对光照和姿态有很好的鲁棒性,同时与现有的人脸识别算法相比,本文的算法具有更高的识别率. Traditional face recognition algorithms usually handle variations in illumination and pose independently. There fore,it is difficult to obtain the global optimal recognition performance. To this end, we propose an affme minimum linear recon struction error (AMLRE) algorithm based on the non-rigid characteristics of human faces in this paper,which combines an affme transformation model and the idea of patch with a linear recomlruction model. Our algorithm simultaneously handles illumination variations as well as compensates the local area alignment errors caused by pose variations, which achieves much better recognition performance. Comprehensive experiments on several public face datasets clearly demonstrate that our proposed algorithm is robust to beth illumination and pose,and thus outperforms most state-of-the-art methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第10期1965-1970,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61103134 No.60933013) "新一代宽带无线移动通信网"国家科技重大专项(No.2010ZX03004-003) 中央高校基本科研业务经费专项资金(No.WK210023002 No.WK2101020003) 安徽省优秀青年人才基金(No.BJ2101020001)
关键词 人脸识别 线性重构 仿射变换 Lucas-Kanade算法 face recognition linear reconstruction affme transformation lucas-kanade algorithm
  • 相关文献

参考文献24

  • 1Z Zhou, A Ganesh, J Wright, et al. Nearest subspace patch matching for face recognition under varying pose and illumina- tion [ A ]. Proceedings of the 8th 1EEE International Conference on Automatic Face Gesture Recognition [ C ]. Amsterdam, the Netherlands, 2008.1 - 8.
  • 2S Baker, I Matthews. Lucas-kanade 20 years on: A unifying framework [ J ]. International Joul'nal of Computer Vision,2004,56(3) :221 - 255.
  • 3W Zhao,R CheUappa, et al.Face recognition:A literature sur- vey [J] .ACM Computing Surveys,2003,35:399- 458.
  • 4X Zou,J Kittler,K Me.sser. Illumination invariant face recogni- tion:A survey [ A]. Proceedings of 1EEE~ Conference on Bio- metrics: Theory, Applications Press,2iX)7.1 - 8.
  • 5R Basil, D Jacobs. l..ambertian reflectance and linear subspaces [J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2003,25(2) :218 - 233.
  • 6A Georghiades,P Belhumeur,D Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose [ J ]. IEEE Transactions on Pattern Analysis and Machine InteUigence, 2001,23(6) :643 - 660.
  • 7V Blanz,T Vetter.Face recognition based on fitting a 3D mor- phable model [J]. IEEE. Transactions on Pattern Analysis and Machine Intelligence, 2003,25(9 ) : 1063 - 1073.
  • 8R Gross,I Mattews, S Baker. Appem'ance based face recogni- tion and light-fields [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(4 ) : 449 - 465.
  • 9R Gross, I Matthews, S Baker. Eigen light-fields and face recognition across pose [ A]. Proceedings of Internation- al Conference on Automatic Face Gesture Recognition [ C ]. Washington DC,2002.3 - 9.
  • 10John Wright, Allen Yang, et al. Robust face recognition via sparse representation [ J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2009,31 ( 2 ) : 210 - 227.

二级参考文献57

  • 1Zhao W Y, Chellappa R, Rosenfeld A, Phillips J. Face recognition: a literature survey[J]. ACM Computing Survey, 2003,35 (4) :399 - 458.
  • 2M Turk, A Pentland. Eigenfaces for recognition[ J]. Journal of Cognitive Neuroscience, 1991,3(1 ) : 71 - 86.
  • 3P N Belhurneur, J P Hespanha, D J Kriegtran. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :711 - 720.
  • 4B Moghaddam, T Jebara, A Penfland. Bayesian face recognition [J] .Pattern Recognition, 2000,33 (11) :1771 - 1782.
  • 5K Lee, J Ho, D Kriegman. Acquiring linear subspaces for face recognition under variable lighting [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (5):684- 698.
  • 6L Zhang, D Samaras. Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(3) :351 - 363.
  • 7B Takacs. Compadng face images using the modified Hausdorff distance[ J]. Pattern Recognition, 1998,31(12) :1873 - 1881.
  • 8Y Gao, M K H Leung. Face recognition using line edge map [ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(6) :764 - 779.
  • 9J Song,B Chen,Z Chi,et al. Face recognition based on binary template matching [ A ]. Proceedings of the Third International Conference on Intelligent Computing(ICIC2007) [ C ]. Berlin: Springer-Verlag,2007.1131 - 1139.
  • 10A M Martinez, R Benavente. The AR face database. CVC technical report # 24,June 1998[EB/OL]. http://cobweb. ecn. purdue. edu./aleix/aleix _ face _ DB. htm, 2007-05-16.

共引文献174

同被引文献104

引证文献5

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部