期刊文献+

环形向量非局部SAR图像降噪算法 被引量:2

Circular-Vector Based Non-Local SAR Image Denoising Algorithm
下载PDF
导出
摘要 提出一种基于环形向量的非局部SAR图像降噪算法.根据像素点的主方向提取环形向量,计算环形向量各自的特征向量.基于特征向量计算相似度权重,该方法的时间复杂度明显优于NL-Means的矩形模板匹配算法,且相似点匹配具有旋转不变性.通过仿真实验验证了该算法的计算速度和旋转不变性能,匹配效果明显优于NL-Means,降噪结果的峰值信噪比和结构相似度优于BM3D、BLS-GSM等主流降噪算法. A circular-vector based non-local SAR image denoising algorithm was proposed. Circular vectors were abstracted according to the main direction of the central pixel. Feature vectors were then calculated and the weights of similarity were obtained based on these feature vectors. The execution time and quality of rotation invariance were tested. The results show that the time complexity is significantly lower than the patch-based similarity matching algorithm in NL-Means, and the rotation invariance is also maintained. Experiments have verified that the proposed algorithm shows better similarity matching results comparing to NL-Means and competitive denoising results on PSNR and SSIM against currently state-of-the-art denoising algorithms, such as BM3D, BLS-GSM.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2012年第11期1174-1178,共5页 Transactions of Beijing Institute of Technology
基金 国家"八六三"计划项目(2011SQ8012321)
关键词 SAR图像降噪 非局部平均 环形向量 旋转不变性 SAR image denoising non-local means circular vector rotation invariance
  • 相关文献

参考文献9

  • 1Gleich D, Datcu M. Wavelet-based despeckling of SAR images using Gauss-Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12) :4127 - 4143.
  • 2Buades A, Coil B, Morel J M. A non-local algorithm for image denoising [ C] // Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE Press, 2005: 60 - 65.
  • 3Lee J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1980, 2 (2) : 165 - 168.
  • 4Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1985,7 (2) : 165 - 177.
  • 5Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one[J]. SIAM Journal on Multiscale Modeling and Simulation, 2005, 4 (2) : 490 - 530.
  • 6Herbert Bay, Andreas Ess, Tinne Tuytelaars, et al. Speeded-up robust features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110 ( 3): 346 -359.
  • 7Lu Y H, Tan S Y, Yeo T S, et al. Adaptive filtering algorithms for SAR speckle reduction[C]//Proceedings of International Geoscience and Remote Sensing Symposium. Lincoln, NE: IEEE Press, 1996 : 67 - 69.
  • 8Amirraazlaghani M, Amindavar H. Two novel Bayesian multiscale approaches for speckle suppression in SAR images [J ]. IEEE Trans on Geoscience and Remote Sensing, 2010,48(7) :2980 - 2993.
  • 9Hore'A, Ziou D. Image quality metrics: PSNR vs. SSIM[C] // Proceedings of 20th International Conference on Pattern Recognition. Istanbul.. IEEE Press, 2010: 2366 - 2369.

同被引文献12

  • 1郦苏丹,李广侠.结合多尺度边缘检测的SAR结构邻域滤波方法[J].电子与信息学报,2006,28(8):1480-1484. 被引量:6
  • 2薄华,马缚龙,焦李成.基于免疫算法的SAR图像分割方法研究[J].电子与信息学报,2007,29(2):375-378. 被引量:6
  • 3Chopper K, Jaeger H, Stephens L, et al. Guidance integrated fuzing analysis and simulation [C ]// Proceedings of the First IEEE Conference on Control Ap- plications. Dayton, OH: [-s.n.l, 1992:750-755.
  • 4Minhas R, Wu J. Invariant feature set in convex hull for fast image registration [ C] /// Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Montreal, Canada: ISIC, 2007 : 1557 - 1561.
  • 5Babacan S D, Luessi M, Spinoulas L, et al. Compressive passive millimeter-wave imaging[C]//Pro- ceedings of the 18th IEEE International Conference on Image Processing (ICIP). Brussels~ IEEE, 2011.. 2705 - 2708.
  • 6Buades A, Coll B, Morel J M. A non-local algorithm for image denoising [C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IS. 1. ]: IEEE, 2005:60 - 65.
  • 7Mahmoudi M, Sapiro G. Fast image and video denoising via non-local means of similar neighborhoods[J]. IEEE Signal Processing Letters, 2005,12 : 839 - 842.
  • 8Feng X G, Milanfar P. Multiscale principal components analysis for image local orientation estimation[C]//Pro- ceedings of Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers. Pacific Grove: IEEE, 2002,1 ..478 - 482.
  • 9Liu X, Tanaka M, Okutomi M. Noise level estimation using weak textured patches of a single noisy image[C~ // Proceedings of 2012 19th IEEE International Conference on Image Processing (ICIP). Orlando: IEEE, 2012:665 - 668.
  • 10黄石生,朱炬波,谢美华.基于变分的SAR图像目标特征增强方法[J].红外与毫米波学报,2010,29(5):392-396. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部