期刊文献+

分形合采油藏非线性渗流模型解的相似结构 被引量:2

SIMILAR STRUCTURE OF THE SOLUTIONS OF MATHEMATICAL MODEL FOR THE NONLINEAR FLOW OF FRACTAL COMMINGLED OIL RESERVOIRS
下载PDF
导出
摘要 传统的分形油藏模型的非线性偏微分方程中,根据弱可压缩流体的假设,忽略了二次压力梯度项的影响,但这种方法对于混气油藏和低渗透油藏应当是有疑问的。针对分形合采油藏渗流数学模型考虑二次压力梯度项的影响,建立了考虑有效井筒半径和三种外边界(无穷大、定压、封闭)条件下的非线性渗流数学模型;通过利用Laplace变换进行全面和深入的分析研究发现该类油藏在三种外边界条件下的渗流特征的解式之间具有相似结构,即它们的解式具有统一的形式(此式有一种类似于几何图形相似的特征),它们的差异只在于其相似核函数的不同。 In the classical nonlinear partial differential equation of fractal oil reservoirs, according to the assump- tion of slightly compressible fluids, the effects of quadratic pressure gradient term is ignored , however this method is questionable for oil-mixed gas reservoirs and low-permeability oil reservoirs. Aiming at the influences of the above term considered in the mathematic model for the flow of fractal commingled oil reservoirs, the nonlinear flow mathe- matical model considering the effective wellbore radius and the conditions of three outer boundaries ( infinite, con- stant pressure and Closed) is established. By using Laplace transform and with the help of comprehensive and deep anaylses and studies, there is the similar structure in the solution's form of these flow characteristics in above three cases, and furthermore their differences are only displayed in the contrasts of their similar kernel functions.
出处 《大庆石油地质与开发》 CAS CSCD 北大核心 2012年第6期79-83,共5页 Petroleum Geology & Oilfield Development in Daqing
基金 国家科技重大专项(2008ZX50443-14) 西华大学应用数学重点学科资助(ZX00910-09-1) 西华大学创新基金(YCJJ201110).
关键词 分形合采油藏 二次压力梯度 有效井筒半径 LAPLACE变换 相似结构 fractal commingled oil reservoirs quadratic pressure gradient effective wellbore radius Laplacetransform similar structure
  • 相关文献

参考文献17

  • 1Hardy H H,Richard A Beier. Fractals in Reservior Engineering[M]. New York: World Scientific, 1994: 79-117.
  • 2Chang J, Yortsos Y C. Pressure-Transient Analysis of fractal Reser-voirs [R] . SPE17170, 1990: 31-38.
  • 3Pertamina SA. Application of Fractal Reservoir Model for Interfer-ence Test Analysis in Kamojang Geothermal Field ( Indonesia)[R]. SPE26465,1993: 3-6.
  • 4Perez G,Chopra A K. Evaluation of Fractal Models to DescribeReservoir Heterogeneity and Performance [ R]. SPE 22694, 1997 :65-72.
  • 5JelmertT . Productivity of Fractal Reservoirs [ R]. SPE 126080,2009: 9-11.
  • 6Acuna J A, Ershaghi 1,Yortsos Y C. Practical Application of Frac-tal Pressure Transient Analysis of Naturally Fractured Reservoirs[R]. SPE 24705, 1995: 173-179.
  • 7同登科,葛家理.分形油藏不稳定渗流问题的精确解[J].力学学报,1998,30(5):621-627. 被引量:17
  • 8Dershowitz W,Doe T. Analysis of Heterogeneous Connected Rock-masses by Forward Modeling of Fractional Dimension Flow Behavior[J] . International Journal of Rock Mechanics and Mining Sciences,1997, 34 (3/4) : 652-655.
  • 9李顺初.一类二阶偏微分方程的Laplace空间解的形式相似性(英文)[J].西华大学学报(自然科学版),2007,26(4):83-86. 被引量:12
  • 10李顺初,伊良忠,郑鹏社.微分方程定解问题解的相似结构[J].四川大学学报(自然科学版),2006,43(4):933-934. 被引量:48

二级参考文献42

  • 1同登科,张鸿庆,王瑞和.非线性双重介质模型的精确解及动态特征[J].应用数学和力学,2005,26(10):1161-1167. 被引量:14
  • 2程时清,李功权,卢涛,李跃刚.双重介质油气藏低速非达西渗流试井有效井径数学模型及典型曲线[J].天然气工业,1997,17(2):35-37. 被引量:23
  • 3黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997,4(1):9-14. 被引量:183
  • 4冯文光 葛家理.单一介质、双重介质非定常非达西低速渗流问题[J].石油勘探与开发,1985,(1):56-62.
  • 5李顺初 黄炳光.Laplace变换与Bessel函数及试井分析理论基础[M].北京:石油工业出版社,2000..
  • 6Chang J,Yortsos Y C.Pressure-transient analysis of fractal reservoirs[J].SPE18170,1990.
  • 7Kamke E.常微分方程手册[M].北京:科学出版社.1977.
  • 8Horald Stehfest.Numerical inversion of Laplace transforms[J].Communications of the ACM,1970,13(1):47-49.
  • 9李顺初 黄炳光.Laplace变换与Bessel函数及试井分析理论基础[M].北京:石油工业出版社,2000..
  • 10曾文曲 刘世耀 译.分形几何—数学基础及其应用[M].沈阳:东北大学出版社,1991.266-291.

共引文献117

同被引文献57

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部