期刊文献+

基于ICA的均匀线阵源个数与信号波形联合估计

Joint Estimation of Order and Waveform of Source Signals with Uniform Linear Array Based on ICA
下载PDF
导出
摘要 源个数估计与波形恢复是信号处理中两个非常重要的内容。文章针对均匀线阵(ULA)提出了一种基于独立分量分析(ICA)的源个数与波形联合估计方法。该方法充分利用了源信号间的独立性以及阵列响应矩阵特殊结构来进行源个数与波形联合估计,不仅能够估计源信号个数,而且能够恢复源信号的时域波形。另外,该方法对空间非均匀噪声及源个数与阵元数相等的情形有很好的适应性。仿真实验证明了该方法的有效性。 The estimation of order and waveform of source signals are very important parts of the signal processing. In this paper, a joint estimation method for the order and envelope of source signals with uniform linear array (ULA) based on independent component analysis (ICA) is proposed. The method makes full use of the independence of signals and the special structure of the steering matrix. It can estimate the order as well as the envelope of source signals. In addition, the method can adapt to the eases of spatially non-uniform noise or the equality of the number of the source signals and sensors. Simulation results demonstrate the efficiency ,of the proposed method.
出处 《电子对抗》 2012年第6期1-4,48,共5页 Electronic Warfare
基金 国家自然科学基金(N0.61072120),新世纪优秀人才支持计划资助
关键词 源个数 信号波形 阵列响应矩阵 均匀线阵(uIA) 独立分量分析(ICA) order waveform steering matrix Independent Component Analysis (1CA) Uniform Linear Array (ULA)
  • 相关文献

参考文献6

  • 1Schmidt R.O. Multiple emitter location and signal parameter estimation[ J]. IEEE Transactions on Antennas and Propagation, 1986, 34 (3) : 267 - 280.
  • 2Roy R., Kailath T. ESPRIT-estimation of signal parameter via rotational invariance technique[ J ]. IEEE Transactions on Anten- nas,Speech and Signal Processing, 1989,37(7):984- 995.
  • 3Wax M., Kailath T. Detection of signals by information theo- retic criteria [ J]. IEEE Trans. Acoust., Speech, Signal Pro- cess., 1985,33 (2) : 387 - 392.
  • 4Hyarinen A., Karhunen J., Oja E. Independent Component Analysis[ M]. New York: Wiley, 2001.
  • 5Bingham E., Hyarinen A. A fast fixed-point algorithm for independent component analysis of complex-valued signals [J]. Int. J. of Neural Systems, 2000,10 (1) : 1 - 8.
  • 6Diamantaras K. I., Kung S.Y. Principal Component Netural Networks: Theory and Applications[ M]. New York: Wiley, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部