期刊文献+

基于强化学习算法的供应链自适应随机库存控制研究 被引量:1

A Reinforcement Learning-Based Adaptive Supply Chain Stochastic Inventory Control
下载PDF
导出
摘要 针对非平稳随机需求的多级多周期供应链库存控制,本文建立了一种包括一个供应商和多个零售商的供应链分散式自适应库存控制模型,以满足给定的零售商服务水平。同时,运用强化学习算法,并根据需求变化情况,供应商和零售商分别自适应地调整库存控制参量。仿真试验表明,当相对需求分布已知,而需求未知时,订货量和服务水平都相对不稳定;安全因子范围大的,订货量和服务水平的波动相对较大,且能够更快的把服务水平调整到目标服务水平区间内。该模型是合理和有效的。 In this paper, we propose a decentralized adaptive inventory control model for a multi-level multi-cycle supply chain consisting of one supplier and multiple retailers with non-stationary random demand. The objective is to satisfy a given interval target service level predefined for each retailers. Using reinforcement learning algorithm, the supplier and the retailer can adaptively adjust their inventory control parameters according to the change of demand respectively. Simulation experiments show that, contrast to stationary demand case, in nonstationary demand situation, order and service level are relatively unstable for a large range of safety factor, and faster service levels adjusted to within the range of the target service levels. Therefore, the model is reasonable and effective.
出处 《青岛大学学报(工程技术版)》 CAS 2012年第4期11-15,共5页 Journal of Qingdao University(Engineering & Technology Edition)
基金 山东省自然科学基金项目资助(ZR2010GM006)
关键词 自适应库存控制 强化学习 仿真 供应链 adaptive inventory control reinforcement learning simulation supply chain
  • 相关文献

参考文献11

  • 1Scarf H. Some Remarks on Baye's Solution to the Inventory Problem[J]. Naval Res Logist Q, 1959, 7(4) : 591 - 596.
  • 2Azoury K. Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution[J]. Manage Sci, 1985, 31(9) : 1150 - 1160.
  • 3Miller B. Scarf's State Reduction Method, Flexibility, and a Dependent Demand Inventory Model[J]. Oper Res, 1986, 34(1) : 83 - 93.
  • 4Lovejoy W. Myopic Policies for Some Inventory Models with Uncertain Demand Distribution[J]. Manage Sci, 1990, 36 (6): 724 -728.
  • 5Packer A. Simulation and Adaptive Forecasting as Applied Inventory Control[J]. Oper Res, 1967, 15(4) : 660 - 679.
  • 6Moinzadeh K. A Multi-echelon Inventory System with Information Exchange[J]. Manage Sci , 2002, 48(3) : 414 -426.
  • 7Zhao Xiande, Xie Jinxing, Lau R S M. Improving the Supply Chain Performance: Use of Forecasting Models Versus Early Order Commitments[J]. Int J Prod Res, 2001, 39(17) : 3923 -3939.
  • 8Pontrandolfo P, Gosavi A, Okogbaa O, et al. Global Supply Chain Management.. A Reinforcement Learning Approach [J].IntJ PodRes, 2002, 40(6): 1299-1317.
  • 9Kim C O, Jun J, Baek J K, et al. Adaptive Inventory Control Models for Supply Chain Management[J]. The Interna- tional Journal of Advanced Manufacturing Technology, 2005, 26(9 - 10) : 1184 - 1192.
  • 10孙超,龚卓,张德胜,张纪会.不确定环境下多周期VMI自适应库存控制方法[J].青岛大学学报(工程技术版),2011,26(3):32-36. 被引量:3

二级参考文献12

  • 1赵泉午,熊榆,林娅,熊中楷.多个零售商库存竞争下的易逝品回购合同研究[J].系统工程,2004,22(8):39-42. 被引量:45
  • 2Bookbinder J H, Cakanyildirim M. Random Lead Times and Expedited Orders in (Q,r) Inventory SystemsEJ]. European Journal of Operational Research, 1999, 115(2): 300- 313.
  • 3Mohebbi E. Supply Interruptions in a Lost-Sales Inventory System with Random Lead Time[j]. Computers & Operations Research, 200a, 30(3): 411-426.
  • 4Janakiraman G, Roundy R O. Lost-Sales Problems with Stochastic Lead Times: Convexity Results for Base-Stock Policies [J]. Operations Research, 2004, 52(5): 795- 803.
  • 5Kim C O, Jun J, Back J K, et al. Adaptive Inventory Control Models for Supply Chain Management[J]. The Internation al Journal of Advanced Manufacturing Technology, 2005, 26(9 - 10) : 1184 - 1192.
  • 6Sutton R S, Barto A G. Reinforcement Learning[M]. Massachusetts: The MIT Press, 1998.
  • 7Brown R G. Smoothing, Forecasting and Prediction of Discrete Time Series [M]. London: Prentice Hall Protessional, 2004.
  • 8Bernard P. Integrated Inventory Management[M]. America: Wiley, 1999.
  • 9晓斌,刘鲁,张阿玲.随机需求下供应商管理库存的供应链模型[J].数学的实践与认识,2008,38(22):1-5. 被引量:6
  • 10朱泽,张予川,高东旭.随机需求环境下VMI模型研究与应用[J].武汉理工大学学报(交通科学与工程版),2009,33(3):608-610. 被引量:5

共引文献2

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部