期刊文献+

解变分不等式问题的一类滤子SQP算法

Filter SQP algorithm for variational inequality problem
下载PDF
导出
摘要 针对一般形式的变分不等式问题,考虑将其转化为约束优化问题求解.对于这种特定的约束优化问题,提出了一类新的滤子序列二次规划(SQP)求解方法.基于变分不等式与约束优化问题的不同,在滤子条件中采用了一个二次价值函数作为目标函数,使得一般的变分不等式问题均可用滤子算法求解.采用SQP方法结合滤子方法获取试探步,只需要计算两个简单不等式判断试探步,算法易实现,计算量小.在较弱的条件下证明了算法的全局收敛性.最后,给出了算法的数值算例,与同类算法比较,结果良好. The variational inequality problem was reformulated as equivalent constrained optimization problem.A new filter SQP method was proposed to solve the constrained optimization problem.Based on the difference between variational inequality problem and constrained optimization problem,a quadratic merit function was adopted at filter conditions to solve the general variational inequality problem by the filter algorithm.A trial step was obtained by SQP method combined with filter technique.Only two inequalities were needed to determine the trial step with less computation work.Under mild conditions,the global convergence was established to provide some numerical examples.The numerical results show good efficiency of the proposed method.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2012年第6期736-740,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10771162)
关键词 变分不等式 约束优化 滤子 序列二次规划 收敛性 variational inequality constrained optimization filter sequential quadratic programming convergence
  • 相关文献

参考文献11

  • 1Taji K, Fukushima M. A new merit function and a suc- cessive quadratic programming algorithm for variational inequality problems[ J]. SIAM Journal on Optimization, 1996, 6(3) :704 -713.
  • 2卢殿臣,汤国生,田立新,付莲莲.半线性系统的最优化问题和弱近似解[J].江苏大学学报(自然科学版),2006,27(4):375-378. 被引量:1
  • 3Fletcher R, Leyffer S. Nonlinear programming without a penalty function [ J ]. Mathematical Programming ( Se- ries:A), 2002,91(2) : 239-269.
  • 4Wachter A, Biegler L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[ J ]. Mathematical Programming (Series:A), 2006,106(1) : 25-57.
  • 5Gould N I M, Sainvitu C, Toint P L. A filter-trust-re- gion method for unconstrained optimization [ J ]. SIAM Journal on Optimization, 2006, 16(2) : 341 -357.
  • 6Karas E, Ribeiro A, Sagastizabal C, et al. A bundle-fil- ter method for nonsmooth convex constrained optimiza- tion [ J ]. Mathematical Programming, 2009, 116 (1/2) :297 - 320.
  • 7Fletcher R, Leyffer S, Toint P L. On the global conver- gence of a fiher-SQP algorithm [ J ]. SIAM Journal on Optimization, 2002, 13 ( 1 ) : 44 - 59.
  • 8Taji K, Fukushima M, Ibaraki T. A globally convergent Newton method for solving strongly monotone variational inequalities[ J ]. Mathematical Programming, 1993, 58 (3) : 369 - 383.
  • 9Haeser G, Schuverdt M L. On approximate KKT condi- tion and its extension to continuous variational inequali- ties [ J ]. Journal of Optimization Theory and Applica- tion, 2011, 149(3) :528 -539.
  • 10Nie P Y. Sequential penalty quadratic programming fil- ter methods for nonlinear programming[ J]. Nonlinear A- nalysis: Real World Applications, 2007, 8 ( 1 ) : 118 - 129.

二级参考文献19

  • 1Ding-guoPu YanZhou Hai-yanZhang.A QP FREE FEASIBLE METHOD[J].Journal of Computational Mathematics,2004,22(5):651-660. 被引量:11
  • 2濮定国,李康弟,薛文娟.解约束优化问题的QP-free非可行域方法[J].同济大学学报(自然科学版),2005,33(4):525-529. 被引量:8
  • 3卢殿臣,付莲莲,田立新,程悦玲.椭圆系统下最优控制的罚函数方法[J].江苏大学学报(自然科学版),2005,26(5):421-424. 被引量:2
  • 4Serovaiskii S Ya.Optimal control of an elliptic equation with a non-smooth nonlinearity[J].Differential equation,2003,39(10):1497-1502.
  • 5Tiba J.Optimal control for second order semi-linear hyperbolic equation[J].Control Theory and Advanced Technology,1987,3(1):33 -43.
  • 6Sumin V I.Extension of optimization problems related to functional equations in spaces of essentially bounded functions[J].Matem Model I Optim Upravl,1998,4(1):126-133.
  • 7Lions J L.Control of Singular Distributed Systems[M].Moscow:Nauka,1987:122-206.
  • 8Gajewski H,Groger K,Zacharias K.Nonlinear Operator Equations and Operator Differential Equations[M].Moscow:Mir,1987:57-133.
  • 9Ferris M C,Pang J S.Engineering and economic applications of complementarity problems[J].SIAM Review,1997,39:669.
  • 10Harker P T,Pang J S.Finite-dimensional variational and nonlinear complementarity problems:A survey of theory,algorithm and applications[J].Mathematical Programming,1990,48:161.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部