期刊文献+

Contact surface fatigue life for roller rack pinion system

Contact surface fatigue life for roller rack pinion system
下载PDF
导出
摘要 A roller rack pinion(RRP)system,which consists of a rack-bar and a cam pinion,transforms a rotation motion into linear motion.The rack-bar has a series of roller train and meshes with the cam pinion.First,the exact tooth profile of the cam pinion and the non-undercut condition to satisfy the required performance have been proposed with the introduction of the profile shift coefficient.Then,the load stress factors are investigated under the variation of the shape design parameters to predict the gear surface fatigue limit which is strongly related to the gear noise and vibration at the contact patch.The results show that the pitting life can be extended significantly with the increase of the profile shift coefficient. A roller rack pinion (RRP) system, which consists of a rack-bar and a cam pinion, transforms a rotation motion into linear motion. The rack-bar has a series of roller train and meshes with the cam pinion. First, the exact tooth profile of the cam pinion and the non-undercut condition to satisfy the required performance have been proposed with the introduction of the profile shift coefficient. Then, the load stress factors are investigated under the variation of the shape design parameters to predict the gear surface fatigue limit which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly with the increase of the profile shift coefficient.
出处 《Journal of Central South University》 SCIE EI CAS 2012年第12期3454-3459,共6页 中南大学学报(英文版)
基金 Research financially supported by Changwon National University in 2011-2012,Korea
关键词 roller rack pinion profile shift coefficient load stress factor pitting life 齿轮系统 疲劳寿命 齿条 接触面 直线运动 旋转运动 接触印痕 齿轮噪声
  • 相关文献

参考文献15

  • 1ISHIDA K, TERADA H, FURUYA N, MAKINO H, IMASE K. Fundamental analysis of linear type trochoidal gear (2nd Report):Motion principle for roller rack type trochoidal gear [J]. JSPE, 1999, 65(3): 428-432.
  • 2GONZALEZ-PALACIOS M A, ANGELES J. The design of a novel pure-rolling transmission to convert rotational into translational motion [J]. Transactions of ASME: Journal of Mechanism Design, 2003, 125: 205-207..
  • 3CHABLAT D, CARO S, BOUYER E. The optimization of a novel prismatic drive [J]. Problems of Mechanics, 2007, 26(1): 32-42.
  • 4HAM S H, NAM W K, OH S H. A Study on optimum tooth profile of pin-pinion gear for linear motion [J]. KSPSE, 2010, 14(3): 64-70.
  • 5IKEJO K, NAGAMURA K, TANAKA E, YAMAMOTO K. Driving performance and strength of pin-rack gear mechanism [J]. Journal of Japan Society for Design Engineering, 2008, 43(7): 388-394.
  • 6NAGAMURA K, IKEJO K, TANAKA E, YAMAMOTO K. Driving performance of pin-rack gear mechanism using a trochoid tooth profile [C]//The Machine Design and Tribology Division Meeting in JSME, Las Vegas, 2008: 205-208.
  • 7HONDA H, MAKINO H. Research on the trochoidal gears (lst report)-Classification and basic formulas of the trochoidal gears [J]. JSPE, 1994, 60(7): 949-953.
  • 8HONDA H. Research on the Trochoidal Gears (2nd Report)-Pressure angle of trochoidal gears and modification of tooth profile [J]. JSPE, 1995, 61(2): 208-212.
  • 9TERADA H, MAK1NO H, IMASE K. Fundamental analysis of linear type trochoidal gear (1 st report)-Motion principle of trochoid cam rack [J]. JSPE, 1997, 63(11): 1609-1613.
  • 10TERADA H, ISHIDA K, CHIBA H, IMASE K. Fundamental analysis of linear type trochoidal gear (3rd report) - Kinematic analysis of an internal gear type troehoidal comer curve rack [J]. JSPE, 2004, 70(2): 209-213.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部