期刊文献+

一类含Caffarelli-Kohn-Nirenberg不等式的奇异椭圆型方程极小解的存在性

Existence of a Minimal Solution for a Singular Elliptic Problems Involving Caffarelli-Kohn-Nirenberg Inequalities
下载PDF
导出
摘要 研究了一类带奇异项及临界指数的椭圆型方程-div(|x|-2a▽u)-μu/(|x|2(1+a))=(|u|p-2u)/(|x|bp)+λ(|u|q-2u)/(|x|dD),利用Ekeland变分原理证明了存在常数Λ>0,使得当λ∈(0,Λ)时,方程存在极小能量解. In this paper, we investigate the singular elliptic equation -div(|x|^-2a△u)-μ u/|x|^2(1+a)=|μ|p-2u/|x|bp+λ|u|q-2u/|x|dD,Using the Ekeland' s variational principle , we prove that there exists a ∧〉0 such that for any λ∈(0,∧), and the existence of a local minimal solution is established.
作者 彭艳芳
出处 《平顶山学院学报》 2012年第5期1-5,共5页 Journal of Pingdingshan University
基金 贵州省科学技术基金(黔科合J字LKS[2011]15号)
关键词 EKELAND变分原理 极小解 Caffarelli-Kohn-Nirenberg不等式 Ekeland's variational principle minimal solution Caffarelli - Kohn - Nirenberg inequality
  • 相关文献

参考文献1

二级参考文献8

  • 1Ferrero A, Gazzola F. Existence of Solutions for Singular Critical Growth Semi-linear Elliptic equations. J. Differential Equations, 2001, 177:494-522.
  • 2Janneli E. The Role Played by Space Dimension in Elliptic Critical Problems. J. Differential Equations, 1999, 156:407-426.
  • 3Caffarelli L, Kohn R, Nirenberg L. First order Interpolation Inequality with Weights. Compositio Math., 1984, 53:259-275.
  • 4Ladyzhenskaya O A, Ural'ceva O A. Linear and Quasilinear Elliptic Equation. New York: Academic Press, 1968.
  • 5Kang D, Peng S J. Positive Solutions for Singular Critical Elliptic Problems. Applied Math. Letters, 2004, 17:411-416.
  • 6Ghoussoub N, Yuan C. Multiple Solutions for Quasi and Linear PDEs Involving the Critical Sobolev- Hardy Exponents. Trans. Amer. Math. Soc., 2000, 352:5703-5743.
  • 7Brezis H, Lieb E. A Relation between Pointwise Convergence of Functions and Convergence of Functionals. Proc. Amer. Math. Soc., 1983, 88:486-490.
  • 8Aubin J P, Ekeland I. Applied Nonlinear Analysis. New York: Wiley, 1984.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部