期刊文献+

基于最大互信息区域跟踪的人体行为检测算法 被引量:5

Human Action Detection Based on Tracking Region of Maximum Mutual Information
下载PDF
导出
摘要 人体行为检测问题不仅需要判断行为的类别,而且需要估计行为发生的时间和位置,有重要的现实应用意义.人体行为检测的主要难点在于参数空间维度高以及背景运动干扰.针对上述难点,本文提出了一种基于最大互信息区域跟踪的人体行为检测算法.该算法将行为区域定义为最大互信息矩形区域,采用稠密轨迹作为底层特征,利用随机森林学习轨迹特征与行为类别的互信息函数,利用轨迹的时间连续性对行为区域进行大时间跨度的预测和跟踪.实验结果表明,该算法不仅能够有效地识别不同类别的行为,而且能够适应现实场景中背景运动的干扰,从而准确地检测和跟踪行为区域. Human action detection tries to estimate not only the category but also the time and place of the action, which are significant for real-world applications. The main difficulties of action detection lie in the high dimensionality of the parameter space and the distraction of dynamic background. To attack these difficulties, an algorithm based on tracking of the maximum-mutual-information region is presented in this paper. We define the action region as the region of maximum mutual information. We use dense trajectories as the low-level feature, learn the mutual information function between the trajectory and the action category via the random forest. Then, the action region is tracked in a large-time span by making use of the continuity of trajectories. The experimental results show the effectiveness of our method in recognizing different actions, and the ability of accurately tracking the action region in large-time-span in the presence of dynamic background.
出处 《自动化学报》 EI CSCD 北大核心 2012年第12期2023-2031,共9页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2009AA11Z214) 国家自然科学基金(61071135) 国家教育部博士点基金资助项目(20090002110077)资助~~
关键词 行为检测 行为识别 随机森林 稠密轨迹 互信息 Action detection, action recognition, random forest, dense trajectory, mutual information
  • 相关文献

参考文献20

  • 1Turaga P, Chellappa R, Subrahmanian V S, Udrea O. Ma- chine recognition of human activities: a survey. IEEE Trans- actions on Circuits and Systems for Video Technology, 2008, 18(11): 1473-1488.
  • 2Gu J X, Ding X Q, Wang S J, Wu Y S. Action and gait recog- nition from recovered 3-D human joints. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(4): 1021-1033.
  • 3谷军霞,丁晓青,王生进.基于人体行为3D模型的2D行为识别[J].自动化学报,2010,36(1):46-53. 被引量:16
  • 4杜友田,陈峰,徐文立.基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法[J].自动化学报,2009,35(3):225-232. 被引量:23
  • 5Yu G, Goussies N A, Yuan J S, Liu Z C. Fast action de- tection via discriminative random forest voting and top-Ksubvolume search. IEEE Transactions on Multimedia, 2011, 13(3): 507-517.
  • 6Ryoo M S, Aggarwal J K. Spatio-temporal relationship match: video structure comparison for recognition of com- plex human activities. In: Proceedings of the 12th Inter- national Conference on Computer Vision. Kyoto, Japan, Brazil: IEEE. 2009. 1593-1600.
  • 7Yuan J S, Liu Z C, Wu Y. Discriminative video pattern search for efficient action detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(9): 1728-1743.
  • 8Gall J, Yao A, Razavi N, Van Gool L, Lempitsky V. Hough forests for object detection, tracking, and action recogni- tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2188-2202.
  • 9Yao A, Gall J, Van Gool L. A Hough transform-based vot- ing framework for action recognition. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pat- tern Recognition. San Francisco, CA, USA: IEEE, 2010. 2061-2068.
  • 10Rodriguez M D, Ahmed J, Shah M. Action MACH: a spatio- temporal maximum average correlation height filter for ac- tion recognition. In: Proceedings of the 2008 IEEE Confer- ence on Computer Vision and Pattern Recognition. Anchor- age, Alaska, USA: IEEE, 2008. 1-8.

二级参考文献38

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2Bengio Y. Markovian models for sequential data. Neural Computing Surveys, 1999, 2:129-162.
  • 3Gu H Y, Tseng C Y, Lee L S. Isolated-utterance speech recognition using hidden Maxkov models with bounded state durations. IEEE Transactions on Signal Processing, 1991, 39(8): 1743-1752.
  • 4Levinson S E. Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1986, 1(1): 29-45.
  • 5Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Florida, USA: IEEE, 1985. 5-8.
  • 6Duong T V, Bui H H, Phung D Q, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 838-845.
  • 7Murphy K P. Dynamic Bayesian Network: Representation, Inference and Learning [Ph. D. dissertation], University of California, USA, 2002.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5000): 2323-2326.
  • 9Aggarwal J K, Park S. Human motion: modeling and recognition of actions and interactions. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visulization, and Transmission. Thessaloniki, Greece: IEEE, 2004. 640-647.
  • 10Pers J, Vuckovic G, Dezman B, Kovacic S. Scale-based human motion representation for action recognition. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis. Rome, Italy: IEEE, 2003. 668-673.

共引文献36

同被引文献27

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部