期刊文献+

一种热工过程数据协调与显著误差检测同步处理方法 被引量:2

A Simultaneous Data Reconciliation and Gross error Detection Method for Thermodynamic Systems
下载PDF
导出
摘要 提出了一种基于冗余解约束遗传算法的鲁棒数据协调方法。引入鲁棒估计作为数据协调问题中的目标函数,不仅对测量数据随机误差的分布形式不敏感,而且抑制了显著误差对协调结果的影响。将数据协调与显著误差检测看作模型辨识与参数估计问题,采用AIC准则调整参数获得最优估计模型。针对鲁棒数据协调目标函数复杂和热工能量平衡约束可能出现隐函数的情况,结合测量冗余的概念提出冗余解约束的遗传算法求解鲁棒数据协调模型。仿真计算表明该方法能够克服显著误差的影响,给出准确的参数估计值,同时检测出系统中的显著误差。在现场热力实验的应用结果进一步验证了方法的有效性。 A robust data reconciliation method based on redundant solved float genetic algorithm was proposed.In order to restrict the influence on reconciliation result caused by random error distribution and gross error in measured data,the robust estimation was introduced as the objective function in data reconciliation problem.The data reconciliation and gross error detection can be regarded as model identification and parameter estimation problem,the Akaike information criterion was used to adjust the model parameter to obtain the optimal model.According to the complex robust objective function and the implicit function as equilibrium constraint in thermal process,combining measurement redundancy concept the redundant solved float genetic algorithm was proposed which was used to solve the robust data reconciliation model.Simulation showed that this method can overcome the gross error influence and provided accurate parameter estimation while all the gross errors were detected.The method was also applied to the field test data and the result verified this method is effective.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第35期115-121,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(51176030)~~
关键词 热力系统 电站 数据协调 鲁棒估计 显著误差 thermodynamic systems power plant data reconciliation robust estimation gross error
  • 相关文献

参考文献17

  • 1Kuehn D R,Davidson. Computer control II,mathematicsof control [J]. Chemical Engineering Progress, 1961,57(6): 44-47.
  • 2Lee S C,Park C E. Sensor value validation based onimplicit sensor redundancy for reliable operation of powerplants [J]. IEEE Transactions on Energy Conversion,2005,20(2): 373-380.
  • 3张兴民,毛玉华,朱剑峰,马昭彦.利用图论方法进行多不良数据检测与辨识[J].中国电机工程学报,1997,17(1):69-72. 被引量:29
  • 4Palme T,Fast M, Them M. Gas turbine sensor validationthrough classification with artificial neural networks[J]. Applied Energy, 2011,88(11): 3898-3904.
  • 5李欢欢,司风琪,徐治皋.一种基于鲁棒自联想神经网络的传感器故障诊断方法[J].中国电机工程学报,2012,32(14):116-121. 被引量:20
  • 6吴盈,司风琪,徐治皋.基于样条变换偏鲁棒M–回归的电站热力过程数据检验[J].中国电机工程学报,2011,31(8):114-118. 被引量:3
  • 7Goulding P R, Lennox B,Sandoz D J,et al. Faultdetection in continuous process using multivariatestatistical methods [J]. International Journal of SystemsScience, 2000,31(11): 1459-1471.
  • 8Li Weihua,Yue H H,Sergio Valle-Cervantes,etal. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control, 2000,10(5): 471-486.
  • 9Albuquerque J S,Biegler L T. Data reconciliation andgross error detection for dynamic sy stems [J]. AIChE,1996,42(10): 2841-2856.
  • 10Morad K, Young B R,Svrcek WY. Rectification of plantmeasurements using a statistical framework[J]. Computers& Chemical Engineering,2005,29(5): 919-940.

二级参考文献63

共引文献118

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部