期刊文献+

一种基于混合学习策略的移动机器人路径规划方法 被引量:4

Path planning method for mobile robot based on a hybrid learning approach
原文传递
导出
摘要 针对未知环境下移动机器人路径规划问题,以操作条件反射学习机制为基础,根据模糊推理系统和学习自动机的原理,提出一种应用于移动机器人导航的混合学习策略.运用仿生的自组织学习方法,通过不断与外界未知环境交互从而使机器人具有自学习和自适应的功能.仿真结果表明,该方法能使机器人学会避障和目标导航任务,与传统的人工势场法相比,能有效地克服局部极小和振荡情况. Aim to solve the path planning problem of mobile robot in the unknown environment,a hybrid learning approach is proposed for the robot navigation based on the operant conditioning theory and the principle of fuzzy inference system and learning automata.The robot is endowed with the capabilities of self-learning and self-adapting with unknown environment by using a bionic self-organizing method.Simulation results show that,compared with the method of artifical potential field,the proposed method can make the robot learn the ability of obstacle avoidance and goal seeking without being stuck in local minima and oscillation.
出处 《控制与决策》 EI CSCD 北大核心 2012年第12期1822-1827,共6页 Control and Decision
基金 国家863计划项目(2007AA04Z226) 国家自然科学基金项目(61075110) 北京市自然科学基金项目(4102011) 北京市教委重点基金项目(KZ201210005001)
关键词 模糊推理系统 学习自动机 操作条件反射 混合学习策略 路径规划 fuzzy inference system learning automata operant conditioning hybrid learning approach path planning
  • 相关文献

参考文献18

  • 1Cang Y, Yung N H C, Danwei Wang. A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(1): 17-27.
  • 2Meng Joo Er, Chang Deng. Obstacle avoidance of a mobile robot using hybrid learning approach[J]. IEEE Trans on Industrial Electronics, 2005, 52(3): 898-905.
  • 3Meng Joo Er, Yi Zhou. Automatic generation of fuzzy inference systems via unsupervised learning[J]. Neural Networks, 2008, 21(10): 1556-1566.
  • 4Boubertakh H, Tadjine M, Glorennec P Y. A new mobile robot navigation method using fuzzy logic and a modified Q-learning algorithm[J]. J of Intelligent and Fuzzy Systems, 2010, 21(1/2): 113-119.
  • 5Narendra K S, Thathchar M A L. Learning automat: An introduction[M]. Upper Saddle River: Prentice-Hall, 1989.
  • 6Pierce D, Kuipers B. Learning to explore and build maps[C]. Proc of the National Conf on Artificial Intelligence. Seattle: MIT Press, 1994: 264-1271.
  • 7Dean T, Anqluin D, Basye K, et al. Inferring finite automata with stochastic output functions and an application to map learning[J]. Machine Learning, 1995, 18(1): 81-108.
  • 8EI-Osery A, Jamshidi M. A stochastic learning automaton based autonomous control of robotic agents[C]. IEEElnt Conf on Systems, Man and Cybernetics. Yasmine Hammamet: IEEE Press, 2002: 100-105.
  • 9Wang X, Ray A, Lee P, et al. Optimal control of robot behaviour using language measure[J]. Int J of Vehicle Autonomous Systems, 2004, 2(3/4): 147-167.
  • 10Cattinelli I, Goldwurm M, Borqhese N. Interacting with an artificial partner: Modeling the role of emotional aspects[J]. Biological Cybernetics, 2008, 99(6): 473-489.

二级参考文献13

  • 1吴克河,李为,柳长安,李国栋.双轮驱动式移动机器人动力学控制[J].宇航学报,2006,27(2):272-275. 被引量:12
  • 2Urakubo T, Tsuchiya K, Tsujita K. Motion Control of a Two-Wheeled Mobile Robot. Advanced Robotics, 2001, 15(7) : 711-728.
  • 3Kozlowski K, Pazderski D. Stabilization of Two-Wheeled Mobile Ro-bot Using Smooth Control Law: Experiment Study // Proc of the IEEE International Conference on Robotics and Automation. Orlan-do, USA, 2006:3387-3392.
  • 4McFartand D, Bosser T. Intelligent Behavior in Animals and Ro- bots. Cambridge, USA: MIT Press, 1993.
  • 5Aristidis L. Reinforcement Learning Using the Stochastic Fuzzy Min- Max Neural Network. Neural Processing Letters, 2001,13(3):213-220.
  • 6Anderson C W. Learning to Control an Inverted Pendulum Using Neural Networks. IEEE Control System Magazine, 1989,9(3):31-37.
  • 7Skinner B F. Two Types of Conditioned Reflex and a Pseudo Type. Journal of General Psychology, 1935, 12:66-77.
  • 8Saksida L M, Touretzky D S. Application of a Model of Instrumen-tal Conditioning to Mobile Robot Control// Proc of the Conference on Sensor Fusion and Decentralized Control in Autonomous Robotic Systems. Pittsburgh, USA, 1997 : 55-66.
  • 9Touretzky D S, Saksida L M. Operant Conditioning in Skinnerbots. Adaptive Behavior, 1997, 5(3/4):219-247.
  • 10Itoh K, Miwa H, Matsumoto M, et al. Behavior Model of Human-oid Robot Based on Operant Conditioning// Pro of the 5th IEEE-RAS International Conference on Humanoid Robots. Tsukuba, Ja-pan, 2005 : 220-225.

共引文献4

同被引文献34

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部