摘要
提出一种适用于多类不平衡分布情形下的模糊关联分类方法,该方法以最小化AdaBoost.M1W集成学习迭代过程中训练样本的加权分类错误率和子分类器中模糊关联分类规则数目及规则中所含模糊项的数目为遗传优化目标,实现了AdaBoost.M1W和模糊关联分类建模过程的较好融合.通过5个多类不平衡UCI标准数据集和现有的针对不平衡分类问题的数据预处理方法实验对比结果,表明了所提出的方法能显著提高多类不平衡情形下的模糊关联分类模型的分类性能.
A fuzzy associative classification method for multi-class imbalanced datasets is presented.The method implements a better combination of AdaBoost.M1W and the process of building fuzzy associative classification by the genetic optimization objective,which is minimization weighted error rate in the process of ensemble iterative learning and the number of fuzzy association rule and total fuzzy items in the weak fuzzy associative classifier.The experiments of comparing with existing data preprocessing approaches aiming at the imbalanced classification problem show that the proposed method can dramatically improve the classification performance of the fuzzy associative classifier for multi-class imbalanced datasets by five UCI multi-class imbalanced benchmark datasets.
出处
《控制与决策》
EI
CSCD
北大核心
2012年第12期1833-1838,共6页
Control and Decision
基金
国家自然科学基金委员会与中国民用航空局联合基金项目(61079007
U1233113)
中国民航局科技计划项目(MHRD201005)
国家自然科学基金青年科学基金项目(61201414)
中央高校基本科研业务费专项资金项目(ZXH2012N001)
关键词
模糊关联分类
多类不平衡分类
遗传算法
集成学习
数据挖掘
fuzzy associative classification
multi-class imbalanced classification
genetic algorithm
ensemble learning
data mining