期刊文献+

一种适用于多类不平衡数据集的模糊关联分类方法 被引量:7

A fuzzy associative classification method for multi-class imbalanced datasets
原文传递
导出
摘要 提出一种适用于多类不平衡分布情形下的模糊关联分类方法,该方法以最小化AdaBoost.M1W集成学习迭代过程中训练样本的加权分类错误率和子分类器中模糊关联分类规则数目及规则中所含模糊项的数目为遗传优化目标,实现了AdaBoost.M1W和模糊关联分类建模过程的较好融合.通过5个多类不平衡UCI标准数据集和现有的针对不平衡分类问题的数据预处理方法实验对比结果,表明了所提出的方法能显著提高多类不平衡情形下的模糊关联分类模型的分类性能. A fuzzy associative classification method for multi-class imbalanced datasets is presented.The method implements a better combination of AdaBoost.M1W and the process of building fuzzy associative classification by the genetic optimization objective,which is minimization weighted error rate in the process of ensemble iterative learning and the number of fuzzy association rule and total fuzzy items in the weak fuzzy associative classifier.The experiments of comparing with existing data preprocessing approaches aiming at the imbalanced classification problem show that the proposed method can dramatically improve the classification performance of the fuzzy associative classifier for multi-class imbalanced datasets by five UCI multi-class imbalanced benchmark datasets.
出处 《控制与决策》 EI CSCD 北大核心 2012年第12期1833-1838,共6页 Control and Decision
基金 国家自然科学基金委员会与中国民用航空局联合基金项目(61079007 U1233113) 中国民航局科技计划项目(MHRD201005) 国家自然科学基金青年科学基金项目(61201414) 中央高校基本科研业务费专项资金项目(ZXH2012N001)
关键词 模糊关联分类 多类不平衡分类 遗传算法 集成学习 数据挖掘 fuzzy associative classification multi-class imbalanced classification genetic algorithm ensemble learning data mining
  • 相关文献

参考文献18

  • 1Bing Liu, Yiming Ma, Ching Kian Wong. Improving an association rule based classifier[C]. Proc of the4th European Conf on Principles of Data Mining and Knowledge Discovery. Lyon, 2000: 504-509.
  • 2Alberto Fem~indez, Salvador Garcfa, Marfa Jos6 del Jesusb, et al. A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets[J]. Fuzzy Sets and Systems, 2008, 159(18): 2378- 2398.
  • 3Alberto Fernandez, Maria Jos6 del Jesus, Francisco Herrera. On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets[J]. Expert Systems with Applications, 2009, 36(6): 9805-9812.
  • 4方敏,王宝树.基于AdaBoost的改进模糊分类规则集成学习[J].电子与信息学报,2005,27(5):835-837. 被引量:2
  • 5Batista G, Prati R C, Monard M C. A study of the behavior of several methods for balancing machine learning training data[J]. SIGKDD Explorations, 2004, 6(1): 20-29.
  • 6Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. J of Computer and System Sciences, 1997, 55(1): 119-139.
  • 7Haibo He, Edwardo. A garcia learning from imbalancedData[J]. IEEE Trans on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
  • 8Xu-Ying Liu, Jianxin Wu, Zhi-Hua Zhou. Exploratory underSampling for class-imbalance learning[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(2): 539-549.
  • 9Chawla N V, Lazarevic A, Hall L O, et al. SMOTEBoost: Improving prediction of the minority class in boosting[C]. Proc of the 7th European Conf on Principles and Practice of Knowledge Discovery in Databases. Dubrovnik, 2003: 107-119.
  • 10Guo H, Viktor H L. Learning from imbalanced data sets with boosting and data generation: The databoost-IM approach[J]. SIGKDD Explorations, 2004, 6(1): 30-39.

二级参考文献31

  • 1高雅,马琳,戴齐.模糊关联规则的挖掘算法[J].西南交通大学学报,2005,40(1):26-29. 被引量:7
  • 2张永,吴晓蓓,向峥嵘,胡维礼.基于多目标进化算法的高维模糊分类系统的设计[J].系统仿真学报,2007,19(1):210-215. 被引量:11
  • 3Gyenesei A. A fuzzy approach for mining quantitative association rules [R]. Finland: Truku Center for Computer Science, 2000.
  • 4Miguel Delgado, Nicolas Marin, Daniel San che2, et al. Fuzzy association rules: General model and applications [J]. IEEE Trans on Fuzzy Systems, 2003, 11(2): 214- 225.
  • 5Eyke Hullermeier. Fuzzy methods in machine learning and data mining: Status and prospects[J]. Fuzzy Sets and Systems, 2005, 156(3): 387-406.
  • 6Didier Dubois, Henri Prade,Thomas Sudkamp. On the representation, measurement, and discovery of fuzzy associations [J]. IEEE Trans on Fuzzy Systems, 2005, 13(2) : 250-262.
  • 7Chen G Q, Yan Peng, Kerre Etienne E. Computationally efficient mining for fuzzy implication- based rules in quantitative databases[J]. Int J of General Systems, 2004, 33(2): 163-182.
  • 8Lopez F J, Blanco A, Garcia F, et al. Fuzzy association rules for biological data analysis: A case study on yeast [J]. BMC Bioinformatics, 2008, 9(1): 107.
  • 9Mathieu Serrurier, Didier Dubois, Henri Prad, et al. Learning fuzzy rules with their implication operators [J]. Data and Knowledge Engineering, 2007, 60(1):71-89.
  • 10Wang Ke, Tang Liu, Han Jiawei, et al. Top down FP- growth for association rule mining[C]. Proc of the 6th Pacific Area Conf on Knowledge Discovery and Data Mining. Taipei, 2002: 334-340.

共引文献17

同被引文献56

  • 1蒋国瑞,司学峰.基于代价敏感SVM的电信客户流失预测研究[J].计算机应用研究,2009,26(2):521-523. 被引量:21
  • 2沈徐辉,罗小平.基于模糊的改进KPCA方法[C]//Proceedings of the 29th Chinese Control Conference.Beijing:2010(7):29-31.
  • 3程鹏.矩阵论[M].西安:西北工业大学出版社,1989.
  • 4Liu Bing, Ma Yiming, Wong Chingkian. Improving an association rule based classifier [C]//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery. Lyon, 2000: 504- 509.
  • 5Chawla N V, Bowyer K W, Hall L O, et al. MOTE.- Synthetic minority over-sampling technique[ J]. Jour- nal of Artificial Intelligence Research, 2002, 16 (1): 321-357.
  • 6Cieslak D A, Chawla N V. Learning decision trees forunbalanced data [C]//Proceedings of the European Conference on Machine Learning and Knowledge Dis- covery in Databases. Antwerp, Belgium, 2008: 241- 256.
  • 7Tang Y, Zhang Y Q, Chawla N V, et al. SVMs mod- eling for highly imbalanced classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B.. Cybernetics, 2009,39(1):281-288.
  • 8Bezdek J. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 9Pal N R, Bezdek J C. On cluster validity for the fuzzy C-mean model [J]. IEEE Transactions on Fuzzy Sys- tems, 1995, 3(3) :370-379.
  • 10Blake C , Keogh E, Merz C J. UCI repository of ma chine learning databases [EB/OL]. http..//www, ics. uci. edu/ mlearn/MLRepository, htm. http..// ar chive, ics. uci. edu/ml/.

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部