期刊文献+

分数阶多目标航迹过程关联

Fractional order multi-target tracking process correlation
原文传递
导出
摘要 为了解决多目标航迹关联模糊的问题,将分数阶引入到多目标航迹关联模型中,提出了针对多目标的分数阶航迹关联模型.算法从数学角度上将整数阶关联度量扩展到分数阶关联度量,并将点信息的非过程关联延伸到线信息的过程关联.实例证明,分数阶较整数阶关联算法能够为关联决策提供更丰富的支持,提高系统可信度、降低系统信息的不确定性,提高了航迹关联的精度. For the problem of the multi-target fuzzy association,the fractional is introduced to tracking correlation,and the multi-target fractional order tracking correlation model is proposed.From the mathematical point of view,the integerorder correlation measurement is extended to the fractional-order correlation measurement.From the correlation of view,the non-process correlation of the point information is elongated to the process correlation of the line information.Example shows that,the fractional-order association algorithm can provide much more related information,and enhance the tracking correlative accuracy.
出处 《控制与决策》 EI CSCD 北大核心 2012年第12期1854-1858,共5页 Control and Decision
基金 国家自然科学基金重点项目(10731050) 教育部创新团队基金项目(IRT00742)
关键词 分数阶 多目标 航迹关联 过程关联 fractional order multi-target tracking association process association
  • 相关文献

参考文献14

  • 1Hou Mingliang, Liu Yuran, Wang Qi. An image information extraction algorithm for salt and pepper noise on fractional differentials[C]. Trans on Tech Publications of Advanced Materials Research. Switzerland, 2011: 1011- 1015.
  • 2Bar-Shalom. On the track-to-track correlation problem[J]. IEEE Trans on AC, 1981, 26(2): 571-572.
  • 3Samko S G, Kilbas A A, Mariehev O I. Fractional integrals and derivatives: Theory and applications[M]. New York: Gordon and Breach Press, 1993.
  • 4Agafonov E, Bargiela A, Burke E, et al. Mathematical justification of a heuristic for statistical correlation of real- life time series[J]. European J of Operational Research, 2009, 198(1): 275-286.
  • 5Oldham K B, Spanier J. The fractional caleulus[M]. New York: Academic Press, 1974.
  • 6Ye J. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment[J]. European J of Operational Research, 2010, 205(1): 202-204.
  • 7Kosaka M, Miyamoto S, Ihara H. A track correlation algorithm for multi-sensor integration[J]. J of Guidance, Control, and Dynamics, 1987, 10(1): 166-171.
  • 8Singer R A, KanyUek A J. Computer control of multiple site track correlation[J]. Automation, 1971, 17(4): 455- 463.
  • 9Fiendrich C. Relaxation function of constitutive equations with fractional theological derivatives: Thermodynamical constraints[C]. Theological Modeling, Thermodynamic and Statistical Approaches. Berlin: SPringer, 1991, 381: 320-330.
  • 10Kharrat A, Chabchoub H, Aouni B, et al. Serial correlation estimation through the imprecise goal programming model[J]. European J of Operational Research, 2007, 177(3): 1839-1851.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部