期刊文献+

基于光束角思想的最大间隔学习机 被引量:1

Maximum margin learning machine based on beam angle
原文传递
导出
摘要 受空间几何知识和光学领域光束角的启发,提出了基于光束角思想的最大间隔学习机(BAMLM).该方法试图在模式空间中找到一个"光源"分别照射两类样本,然后根据照射区域的不同确定样本类属.分析发现,BAMLM的核化形式等价于核化中心受限最小包含球(CCMEB),通过引入核心向量机将BAMLM扩展为基于核心向量机的BAMLM(BACVM),有效地解决了大规模样本的分类问题.标准数据集和人工数据集上的实验表明了BAMLM和BACVM的有效性. Inspired by space geometry and beam angle,a maximum margin learning machine based on beam angle(BAMLM) is proposed in this paper.The basic idea of BAMLM is to find a classified point in pattern space to separate two classes.Meanwhile,the kernelized BAMLM is equivalent to the kernelized center-constrained minimum enclosing ball(CCMEB),and BAMLM can be extended to BACVM by introducing core vector machine(CVM) which can solve the classification for large-scale datasets.Experimental results obtained from synthetic and standard datasets show the effectiveness of the proposed algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2012年第12期1870-1875,1880,共7页 Control and Decision
基金 国家863计划项目(2007AA1Z158 2006AA10Z313) 国家自然科学基金项目(60773206 60704047)
关键词 光束角 模式分类 分类点 大规模样本 beam angle pattern recognition classified point large-scale datasets
  • 相关文献

参考文献16

  • 1Scholkopf B, Platt J, Shawe-Taylor J, et al. Estimating the support of high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.
  • 2Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66.
  • 3冯爱民,薛晖,刘学军,陈松灿,杨明.增强型单类支持向量机[J].计算机研究与发展,2008,45(11):1858-1864. 被引量:11
  • 4Lauckriet G R G, Ghaoui L E, Jordan M. Robust novelty detection with single-class MPM[M]. Cambridge: MIT Press, 2002: 905-912.
  • 5Wei X K, Huang G B, Li Y H. Mahalanobis ellipsoidal learning machine for one class classification[C]. Proc of the 6th Int Conf on Machine Learning and Cybernetics. Los Alamitos: IEEE Computer Society, 2007: 3528-3533.
  • 6Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 123-167.
  • 7Mahesh Pal, Giles M Foody. Feature selection for classification of hyper spectral data by SVM[J]. IEEE Trans on Geoscience and Remote Sensing, 2010, 48(5): 2297-2307.
  • 8Scholkopf B, Smola A, Bartlet P. New support vector algorithms[J]. Neural Computation, 2000, 12(5)i 1207- 1245.
  • 9Tsang I W, Kwok J T, Cheung P M. Core vector machines: Fast SVM training on very large data sets[J]. J of Machine Learning Research, 2005, 6: 363-392.
  • 10Suykens J A, Vandewalle J. Least squares support vector machines classifiers[J]. Neural Processing Letters, 1999, 19(3): 293-300.

二级参考文献24

  • 1潘志松,倪桂强,谭琳,胡谷雨.异常检测中单类分类算法和免疫框架设计[J].南京理工大学学报,2006,30(1):48-52. 被引量:5
  • 2Tax D, Duin R P. Support vector domain description [J]. Pattern Recognition Letters, 1999, 200(11/13): 1191-1199
  • 3Bishop C. Novelty detection and neural network validation [C] //IEE Proc of Vision, Image and Signal Processing. 1994:217-222
  • 4Duda R O, Hart P E, Stork D G. Pattern Classification [M]. 2nd ed. New York: John Wiley & Sons, 2001
  • 5Lanckriet G R G, Ghaoui L E, Jordan M. Robust novelty detection with single-class MPM [C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2002:905-912
  • 6Tsang I W, James T K, Li S. Learning the kernel in Mahalanobis one-class support vector machines [C] //Proc of the Int Joint Conf on Neural Networks (IJCNN'06). Los Alamitos: IEEE Computer Seeiety, 2006:1169-1175
  • 7Wei X K, Huang G B, Li Y H. Mahalanobis ellipsoidal learning machine for one class classificationin[C]//Proc of the 6th Int Conf on Machine Learning and Cybernetics. Los Alamitos: IEEE Computer Seciety, 2007: 3528-3533
  • 8Juszczak P. Learning to recognise.. A study on one class classiifcation and active learning [D]. Delft: Delft University of Technology, 2006
  • 9Dolia A, Harris C, Shawe-Taylor J. Kernel ellipsoidal trimming [J]. Computational Statistics and Data Analysis, 2007, 52(1): 309-324
  • 10Tax D, Duin R P. Support vector data description [J]. Machine Learning, 2004, 54(1):45-66

共引文献10

同被引文献9

  • 1FAN Shu, LIAO J R, YOKOYAMA R, et al. Forecasting the wind generation using a two-stage based on meteorological information[J]. IEEE Transactions On Energy Conversion, 2009, 24(2): 474-482.
  • 2TIAN X, GASSO G CAHU S. A multiple kernel framework for inductive semi-supervised SVM learning[J]. Neuroeomputing, 2012, 90(1): 46-58.
  • 3VAPNIK V. The nature of statistical learning theory[M]. New York: Spdnger-Vcrlag, 1995.
  • 4LIN C F, WAN S D. Fuzzy support vector machines[J]. IEEE Transactiom on Neural Networks, 2002, 13(2): 464-471.
  • 5MULLER K R, MIKA S, RATSCH C et al. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-202.
  • 6孙名松,高庆国,王宣丹.基于双隶属度模糊支持向量机的邮件过滤[J].计算机工程与应用,2010,46(2):93-95. 被引量:5
  • 7罗文,王莉娜.风场短期风速预测研究[J].电工技术学报,2011,26(7):68-74. 被引量:47
  • 8孙斌,姚海涛,刘婷.基于高斯过程回归的短期风速预测[J].中国电机工程学报,2012,32(29):104-109. 被引量:96
  • 9刘忠宝,潘广贞,赵文娟.流形判别分析[J].电子与信息学报,2013,35(9):2047-2053. 被引量:13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部