期刊文献+

基于社会化标注的博客标签推荐方法 被引量:10

Tag recommendation for blogs based on social tagging
下载PDF
导出
摘要 为了提高博客系统推荐标签的质量,分析了现有的标签推荐算法及相关技术,提出了一种基于社会化标注的博客标签推荐方法。该方法的优势在于:利用相似博客的社会化标签作为候选标签集,确保了推荐标签的全面性和可用性;基于TF-IDF相似度方法定义筛选步骤去除候选标签集中冗余和冷僻的标签,提高了推荐标签的准确性和高效性。实验结果表明了该方法的有效性。 To improve the quality of recommended tags in the bolgosphere, the algorithms of tag recommendation and related work are studied and a tag recommendation method for blogs based on social tagging is proposed. It has two advantages. First, to ensure the comprehensiveness and usability of the recommended tags, candidate tagset are selected from the tags of similar blogs based on the relationship between social tags and blog posts. Second, redundant tags and unfamiliar tags are got rid of from the candidate tagset based on TF-IDF similarity to improve the accuracy and high efficiency of the recommended tags. Finally, the experiments demonstrate the effectiveness of the method.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第12期4609-4613,共5页 Computer Engineering and Design
关键词 社会化标注 标签推荐算法 典型相关分析 文本特征加权方法 标签冗余 social tagging tag recommendation canonical correlation analysis term frequency-inverse document frequency method tag redundancy
  • 相关文献

参考文献11

  • 1吴思竹.社会标注系统中标签推荐方法研究进展[J].图书馆杂志,2010,29(3):48-52. 被引量:14
  • 2魏建良,朱庆华.社会化标注理论研究综述[J].中国图书馆学报,2009,35(6):88-96. 被引量:46
  • 3Gilad Mishne. Autotag : A collaborative approach to automatedtag assignment for weblog posts [C]. Proceedings of the 15thInternational Conference on World Wide Web, 2006: 953-954.
  • 4Sood S,Hammond K, Owsley S,et al. Tagassist: Automatictag suggestion for blog posts [C]. Internatinal Conference onWeblogs and Social Media, 2007.
  • 5Hotho A, Jaschke R,Schmitz C. Information retrieval in folk-somomies: Search and ranking [C]. Berlin: Springer,2006:411-426.
  • 6Adrian B, Sauermann L, Roth-Berghofer T. ConTag : A sematic tagrecommendation system [C]. Graz: Journal of Universal Comuput-er Science, 2007 ; 297-304.
  • 7Andrea Marchetti, Maurizio Tescono, Francesco Ronzano.SemKey: A semantic collaborative tagging system [C]. Pro-ceedings of the 16th International on World Wide Web Confe-rence, 2007: 8-12.
  • 8孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 9韩敏,唐常杰,段磊,李川,巩杰.基于TF-IDF相似度的标签聚类方法[J].计算机科学与探索,2010,4(3):240-246. 被引量:22
  • 10Delicious tagging system website [EB/OL]. [2011-12-10].http : //delicious, com/.

二级参考文献115

  • 1张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 2Nauman M, Hussain F. Common sense and folksonomy: engineering an intelligent search system [ C]. In Proceedings of IEEE International Conference on Information and Emerging Technologies. 2007, 1-6.
  • 3Canali L, Rossi De. Folksonomies : tags strengths, weaknesses and how to make them work [ OL]. [ 2008-10-02 1. http://www, mastemewmedia, org/news/2006/02/01/folksonomies _ tags _strengths_weaknessesand. htm.
  • 4Merholz P. Metadata for the Masses [ OL ]. [2008-10-02]. http://www, adaptivepath, com/ publications/essays/archives/000361, php.
  • 5Mika P. Ontologies are us: a unified model of social networks and semantics[ J]. LNCS: The Semantic Web-ISWC 2005. Springer Berlin/Heidelberg, 2005 (3729) : 522 - 536.
  • 6Schmitz C, Hotho A, Jaschke R, et al. Mining association rules in folksonomies [ J ]. Data Science and Classification. Springer Berlin/Heidelberg, 2006, Part Ⅵ, 261 -270.
  • 7Hotho A, Jaschke R, Schmitz C, et al. Information retrieval in folksonomies: search and ranking [J]. LNCS: The Semantic Web: Research and Applications. Springer Berlin/Heidelberg, 2006 (4011) : 411 -426.
  • 8Gruber T. Ontology of folksonomy: A mash-up of apples and oranges [OL]. [ 2008-10-02 ]. http://tomgruber, org/writing/mtsd35-ontology-offolksonomy, htm.
  • 9Zhou M, Bao S, Wu X, et al. An unsupervised model for exploring hierarchical semantics from social annotations [ C ]. LNCS: The Semantic Web, Springer Berlin /Heidelberg, 2008, 680 - 693.
  • 10Abel F, Henze N, Krause D. A novel approachto social tagging: groupme! [ C]. In 4th International Conference on Web hfformation Systems and Technologies ( WEBIST), May 2008.

共引文献164

同被引文献93

  • 1中国互联网络信息中心.中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.net.cn,2004—07—21/2004—08—09.
  • 2周涛.个性化推荐的十大挑战[J].中国计算机学会通讯,2012,8(7):48-61.
  • 3RICCI F,ROKACH I,SHAPIRA B,et al.Recommender systems handbook [M].Berlin:Springer,2011:145-186.
  • 4SYMEONIDIS P,TIAKAS E,MANOLOPOULOS Y.Product recommendation and rating prediction based on multi-modal social networks [C]// Proceedings of the 5th ACM Conference on Recommender Systems.New York:ACM Press,2011:61-68.
  • 5ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions [J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 6Kantor P B, Ricci F, Rokach L, et al. Recommender Systems Handbook[M]. 2011: Springer.
  • 7Bobadilla J, Ortega F, Hernando A, et al. Recommender Systems Survey[J]. Knowledge-Based Systems, 2013.
  • 8Heidemann J, Klier M,Probst F. Online Social Networks: A Survey of a Global Phenomenon[J]. Computer Networks, 2012, 56 (18): 3866-3878.
  • 9Zhou X, Xu Y, Li Y, et al. The State-of-the-Art in Personalized Recommender Systems for Social Networking[J]. Artificial Intelligence Review, 2012, 37(2):119-132.
  • 10Hoffman T. Online Reputation Management is Hot-But Is It Ethical[J]. Computerworld, February, 2008:1-4.

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部