期刊文献+

压缩传感理论在磁共振成像技术中的应用 被引量:3

The Application of Compressed Sensing in Magnetic Resonance Imaging
下载PDF
导出
摘要 这篇文章主要介绍了压缩传感(Compressed Sensing,CS)理论在磁共振成像(Magnetic Resonance Imaging,MRI)技术中的应用,这一技术可简称为CS-MRI。通常情况下,MRI的采集速度相对比较慢,从而限制了它的进一步发展,而CS-MRI可以在只有很少的MRI采集信号的情况下精确地重建出组织影像,从而大大提高采集效率,而且这种方法还具有很强的去噪能力。因此,可以利用CS-MRI在相同的空间分辨率下获得更快的成像速度,或者在同样的时间分辨率下获得更精细的组织影像。为了实现CS-MRI,必须对传统的信号采集方式和数据处理方式进行修改。本文首先从总体上概况了CS-MRI的理论基础,然后分别从稀疏变换,不相干欠采样和非线性重建算法三个方面具体阐述了它的的具体实现方法,最后对CS-MRI的超强的去噪能力进行了解释。 The paper mainly introduces the application of Compressed Sensing (CS) in Magnetic Resonance Imaging (MRI), which is called CS-MRI for short. In general, the acquisition speed is relatedly slow, which limits its development to some extent. However, CS-MRI has the ability to reconstructing tissue image with few MRI data, which can enhance MRrs acquisition efficiency, as well as the strong ability to defending noise. Therefore, we can achieve either faster imaging speed under the same space resolution, or higher image quality under the same time resolution. To apply CS-MRI successfully, new methods of signal sampling and data processing should be developed. Firstly, the basic theory of CS-MRI is demonstrated. Then, we decompose the process to three particular parts: sparse transform, incoherent under-sampling, and non-linear reconstruction algorithm. In the end, why CS-MRI is able to denoise is explained.
作者 王飞 高嵩
出处 《中国医学物理学杂志》 CSCD 2012年第6期3755-3758,3833,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金(No.81171330) 北京市自然科学基金(No.7102102) 国家科技支撑计划课题(NO.2012BAI23B07)
关键词 压缩传感 磁共振成像 快速成像 图像去噪 CS MRI rapid imaging image denoise
  • 相关文献

参考文献16

  • 1Antonini,M.等.一种应用小波变换的图像编码方法[J].IEEE图像处理汇刊.1992,1(2):P.205-220.
  • 2MALLAT.S.G.一种多分辨率信号分解理论-小波表达[J].IEEE通信模式分析与机器智能.1989,11(7):P.674-693.
  • 3E. Candes, J. Romberg, and T.Tao.具有鲁棒性的不确定原理:由高度不完全的频率信息得到精确的信号重建[J].IEEE信息论汇刊.2006,52(2):P.489-509.
  • 4D. Donoho.压缩传感[J].IEEE信息论汇刊.2006,52(4):p.1289-1306.
  • 5E.Candes,T.Tao.一种由随机投影得到的优化信号恢复方法:通用编码策略[J].IEEE信息论汇刊.2006,52(12):p.5406-5425.
  • 6Lustig, M.,D. Donoho and J.M. Pauly.稀疏MRI:压缩传感在磁共振成像中的应用[J].医用磁共振.2007,58(6):p.1182-1195.
  • 7Lustig M, Santos JM, Donoho DL, Pauly JM. K-t稀疏:一种可以开发空间和时间稀疏度的高框架率动态MRI[J].第13届ISMRM年会会刊,西雅图,2006.p.2420.
  • 8李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:204
  • 9Lustig.M.等.压缩传感MRI[J].IEEE信号处理杂志.2008,25(2):p.72-82.
  • 10Haldar, J.P., D. Hemando and Z.P.Liang.随机编码压缩传感MRI[J].IEEE医学影像学报.2011.30(4):p.893-903.

二级参考文献61

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 9Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
  • 10Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.

共引文献203

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部