期刊文献+

退火纯钛板压缩力学性能的各向异性 被引量:11

Anisotropy of compressive mechanical properties of annealed pure titanium sheet
下载PDF
导出
摘要 沿退火纯钛板材轧向(RD 0°)、横向(RD 90°)以及轧制平面内与轧向成45°(RD 45°)等3个方向取圆柱形试样,采用Instron电子拉伸机和分离式Hopkinson压杆,进行准静态和动态压缩实验,获得不同应变率下的应力-应变曲线,计算3个方向的应变率强化效应。研究结果表明:退火纯钛板准静态和动态压缩力学性能均表现出明显的各向异性,其中RD 90°方向屈服强度最大,RD 45°方向次之,RD 0°方向屈服强度最小;在较小的应变程度下流变应力也具有同样的规律。不同方向上的应变率强化效应也存在显著差异:RD 0°方向最强,RD 45°方向次之,RD 90°方向最弱;基于纯钛{0001}-1 1 20-基面和{1 010}-1 210-棱柱面滑移微观塑性变形机制,结合晶体塑性变形理论,考虑多晶板材晶体取向分布,定性解释了退火纯钛板压缩力学性能各向异性。 The quasi-static and dynamic compressive mechanical properties of annealed pure titanium sheet were investigated by means of Instron apparatus and Split Hopkinson pressure bar technology.Cylindrical specimens cut with the cylinder axes along the sheet’s rolling direction(RD 0°),transverse direction(RD 90°) and 45° direction from rolling direction(RD 45°) lying in the rolling plane were compressed at different strain rates.The results show that both the yield strength and flow stress for the RD 90° direction sample are the maximum at low strain degree,while those for the RD 0° direction are the minimum.The strain rate hardening effects of annealed pure titanium sheet for three different directions also exhibit pronounced anisotropy.The effect for RD 0° direction is the strongest while that for the RD 90° direction is the weakest.Taking into account of crystal orientation distribution of polycrystalline pure titanium sheet,the mechanical anisotropy of titanium sheet can be explained qualitatively based on the {0001} -1 1 20- basal slip and {1 010}-1 210- prismatic slip and the microscopic crystal plasticity theory.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第11期4253-4258,共6页 Journal of Central South University:Science and Technology
基金 中南大学粉末冶金国家重点实验室开放基金资助项目(2008112047)
关键词 纯钛 压缩力学性能 各向异性 应变率强化效应 织构 pure titanium compressive mechanical property anisotropy strain rate hardening effect texture
  • 相关文献

参考文献17

  • 1Wulf G L. High strain rate compression of titanium and some titanium alloys[J]. International Journal of Mechanical Sciences, 1979, 21(12): 713-718.
  • 2Lawson J E, Nicholas T. The dynamic mechanical behavior of titanium in shear[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(2): 65-76.
  • 3Sheikh-Ahmad J Y, Bailey J A. A constitutive model for commercially pure titanium[J]. Journal of Engineering Materials and Technology, 1995, 117(2): 139-144.
  • 4Chichili D R, Ramesh K T, Hemker K J. The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling[J]. Acta Materialia, 1998, 46(3):1025-1043.
  • 5Nemat-Nasser S, GUO Wei-guo, CHENG Jing-yi. Mechanical properties and deformation mechanisms of a commercially pure titanium[J]. Acta Materialia, 1999, 47(13): 3705-3720.
  • 6CHENG Jing-yi, Nemat-Nasser S. A model for experimentally- observed high-strain-rate dynamic strain aging in titanium[J]. Acta Materialia, 2000, 48(12): 3131-3144.
  • 7ZHOU F H, Wright T W, Ramesh K T. A numerical methodology for investigating the formation of adiabatic shear bands[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(5): 904-926.
  • 8Salem A A, Kalidindi S R, Doherty R D, et al. Strain hardening due to deformation twinning in alpha-titanium: Mechanisms[J]. Metallurgical and Materials Transactions A, 2006, 37(1): 259-268,.
  • 9ZENG Zhi-peng, Jonsson S, Roven H J. The effects of deformation conditions on microstructure and texture of commercially pure Ti[J]. Acta Materialia, 2009, 57(19): 5822-5833.
  • 10XU Yong-bo, ZHANG Jing-hua, BAI Yi-long, et al. Shear localization in dynamic deformation: Microstructural evolution[J]. Metallurgical and Materials Transactions A, 2008, 39(4): 811-843.

同被引文献77

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部