期刊文献+

多空位缺陷和硼氮杂质对锯齿型石墨烯纳米带电子结构的影响 被引量:2

Effect of defect and boron/nitrogen doping on electronic properties of zigzag graphene nanoribbons
下载PDF
导出
摘要 利用基于密度泛函理论的第一性原理方法,研究多空位缺陷和掺杂对对称性锯齿型石墨烯纳米带(ZGNRs)的电子结构的影响。研究结果表明,具有相同位置的多空位缺陷或氮掺杂的对称性ZGNR显示了半金属特性,而硼掺杂的对称性ZGNR显示了半导体性质。石墨烯纳米带的锯齿形边缘上和空位缺陷处都存在自旋极化的电子态,并且边缘上电子自旋呈反铁磁性排列。具有多空位缺陷的ZGNR磁矩依赖于带宽、空位缺陷的构型以及空位缺陷与边缘的距离,从而磁矩随着带宽的增加呈现震荡效应。这种特殊的缺陷和掺杂效应可用来设计新颖的自旋电子器件。 Using first-principles based on density functional theory,the effect of multivacancies defect and boron/nitrogen doping on the eletronic properties of zigzag graphene nanoribbons(ZGNRs) was studied.The results show that symmetry ZGNRs with multivacancies defect or nitrogen doping at the same positions have the half-metallic behavior,but boron doping induces the semiconductor properties.The ground state of ZGNRs has an antiferromagnetic(AF) configuration,where electronic states with opposite spins are highly localized at the edges of ZGNRs and multivacancies.The magnetism property of ZGNRs with multivacancies defect depends on the ribbon width,the defect configuration,and the distance between the defect and the ribbon edge.The magneticmomentum is oscillatory with the increase of the ribbon.These unconventional defect and doping effects could be used to design novel spin nanoelectronic devices.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第11期4361-4366,共6页 Journal of Central South University:Science and Technology
基金 湖南省自然科学基金资助项目(11JJ3073) 湖南省教育厅科研基金资助项目(10C1171) 湖南省科技厅基金资助项目(2011KJT20)
关键词 锯齿型石墨烯纳米带 缺陷 掺杂 电子结构 zigzag graphene nanoribbons defect doping electronic property
  • 相关文献

参考文献24

  • 1Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458: 877-880.
  • 2Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nature Materials, 2009, 8(3): 235-242.
  • 3Wang X R, Li X L, Zhang L, et al. N-doping of graphene through electrothermal reactions with ammonia[J]. Science, 2009, 324 : 768-771.
  • 4Han M Y, Ozyilmaz B, Zhang Y B, et al. Energy band-gap engineering of graphene nanoribbons[J]. Phys Rev L, 2007, 98: 206805.
  • 5Querlio D Z, Apertet Y, Valentin A, et al. Suppression of the orientation effects on bandgap in graphene nano-ribbons in the presence of edge disorder[J]. Appl Phys Lett, 2008, 92:042108.
  • 6Son Y W, Cohen M L, Louie S G; et al. Half-metallic graphene nanoribbons[J]. Nature, 2006, 444: 347-349.
  • 7Li Z Y, Qian H Y, Wu J, et al. Role of symmetry in the transport properties of graphene nanoribbons under bias[J]. Phys Rev Lett, 2008, 100: 206802.
  • 8Oeiras R Y, Araujo-Moreira F M, da Silva E Z. Defect-mediated half-metal behavior in zigzag graphene nanoribbons[J], Phys Rev B, 2009, 80: 073405.
  • 9Zhang Y T, Jiang H, Sun Q F, et al. Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene rtanodbbons[J]. Phys Rev B, 2010, 81: 165404.
  • 10Wu M H, Wu X J, Gao Y, et al. Materials design of half-metallic graphene and graphene nanoribbons[J]. Appl Phys Lett, 2009, 94 223111.

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部