期刊文献+

基于摩擦滑动的低应力区岩石变形记忆性机理 被引量:7

Mechanism of rock deformation memory effect in low stress region based on frictional sliding
下载PDF
导出
摘要 采用砂岩试样进行岩石记忆性物理实验,描述岩石变形记忆性的基本特征。在物理实验及力学基本原理的基础上,提出在低于微裂纹初始应力以下应力区,变形记忆性的机理为微裂纹和颗粒接触面的摩擦滑动。基于此机理,构建包含Hook体和圣韦南体的基本单元模型,用来模拟单微裂纹或颗粒接触面上的摩擦滑动,对基本单元进行分析。将基本单元组合构建含多接触面的理论模型,对含大量微裂纹及颗粒的岩石进行模拟。研究结果表明:岩石变形记忆性存在于低应力区域;力学模型中的应变差曲线特性与实验曲线特性相吻合,可产生变形记忆性,由此证明微裂纹及颗粒接触面的摩擦滑动可以产生岩石变形记忆性。 The physical experiment was performed on the sandstone sample.The experiment gave the basic features of the deformation memory effect.Based on the experiment and basic mechanics,the frictional sliding over pre-existing crack interfaces and grain boundaries was proposed as the mechanism for the deformation memory effect in the low stress region.A basic model that consists of Hook body and St.Venant body in one dimension for simplification was constructed and then a model with many basic elements was developed to simulate the rock specimen with a large number of crack interfaces and the grain boundaries.The results show that the rock memory effect exists in the stress region,and the characteristics of the differential strain curve in the model is in accordance with that in the experiments.From above,the frictional sliding over the cracks interfaces and grain boundaries can produce the rock deformation memory effect in the low stress region.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第11期4464-4471,共8页 Journal of Central South University:Science and Technology
基金 2010年中央高校基本科研业务费项目(2010B13914) 江苏省2010普通高校研究生科研创新计划(CX10B_215Z) 国家"十二五"科技支撑计划项目(2012BAK03B04)
关键词 岩石变形记忆性 变形率变化法 地应力测量 摩擦滑动 rock deformation memory effect deformation rate analysis(DRA) in situ stress measurement frictional sliding
  • 相关文献

参考文献25

  • 1Yamamoto K, Kuwahara Y, Kato N, et al. Deformation rate analysis: A new method for in situ stress estimation from inelastic deformation of rock samples under uni-axial compressions[J]. Tohoku Geophysical Journal, 1990, 33: 127-147.
  • 2Yamshchikov V S, Shkuratnik V L, Lavrov A V. Memory effects in rocks (review)[J]. Joumal of Mining Science, 1994, 30(5): 463-473.
  • 3Fairhurst C. Stress estimation in rock: A brief history and review[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7/8): 957-973.
  • 4Yabe Y, Yamamoto K, Sato N, et al. Comparison of stress state around the Atera fault, central Japan, estimated using boring core samples and by improved hydraulic fracture tests[J]. Earth, Planets, and Space, 2010, 62: 257-268.
  • 5Yamamoto K, Yabe Y. Stresses at sites close to the Nojima Fault measured from core samples[J]. Island Arc, 2001, 10(3/4): 266-281.
  • 6Yamamoto K. A theory of rock core-based methods for in-situ stress measurement[j]. Earth Planets Space, 2009, 61(10): 1143-1161.
  • 7Yabe Y, Song S R, Wang C Y. In-situ stress at the northern portion of the Chelungpu fault,Taiwan, estimated on boring cores recovered from a 2-km-deep hole of TCDP[J]. Earth Planets Space, 2008, 60(8): 809-819.
  • 8Yabe Y, Omura K. In-situ stress at a site close proximity to the Gofukuji Fault, central Japan, measured using drilling cores[J]. Island Arc, 2011, 20(2): 160-173.
  • 9Seto M, Villaescusa E, Utagawa M, et al. In situ stress evaluation from rock cores using AE method and DRA[J]. Shigen-to-Sozai, 1998, 114(12): 845-855.
  • 10Hunt S P, Meyers A G, Louchnikov V. Modelling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method[J]. Computers and Geotechnics, 2003, 30(7): 611-621.

二级参考文献34

  • 1陈群策,毛吉震,侯砚和,张志国.原生裂隙对水压致裂应力测量结果的影响[J].岩土工程学报,2005,27(3):279-282. 被引量:5
  • 2尤明庆.水压致裂法测量地应力方法的研究[J].岩土工程学报,2005,27(3):350-353. 被引量:54
  • 3周钢,李玉寿,吴振业.大屯矿区地应力测量与特征分析[J].煤炭学报,2005,30(3):314-318. 被引量:36
  • 4Chang,S.H,Yun,K.J,Lee,C.I. Modeling of fracture and damage in rock by the bonded-particle model[J].Geosystem Engineering,2002,(04):113-120.
  • 5Chen,Z.H,Tham,L.G,Xie,H. Experimental and numerical study of the directional dependency of the Kaiser effect in granite[J].International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,2007,(07):1053-1061.
  • 6Filimonov,Y.L,Lavrov,A.V,Shafarenko,Y.M,Shkuramik,V.L. Memory effects in rock salt under triaxial stress state and their use for stress measurement in a rock mass[J].Rock Mechanics and Rock Engineering,2001,(04):275-291.
  • 7Fujii,N,Harnano,Y. Anisotropic changes in resistivity and velocity during rock deformation[A].New York:Academic Press,Inc,1997.53-63.
  • 8Hazzard,J.F,Young,R.P. Simulating acoustic emissions in bonded particle models of rock[J].International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,2000,(05):867-872.doi:10.1016/S1365-1609(00)00017-4.
  • 9Holcomb,D.J,Costin,L.S. Detecting damage surfaces in brittle materials using acoustic emissions[J].Journal of Applied Mechanics,Transactions of the ASME,1986,(03):536-544.
  • 10Holcomb,D.J. General theory of the Kaiser effect[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1993,(07):929-935.

共引文献25

同被引文献76

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部