期刊文献+

一类扰动差分系统的h稳定性 被引量:1

h-STABILITY FOR A CLASS OF PERTURBED DIFFERENCE SYSTEMS
原文传递
导出
摘要 对含算子的非线性扰动差分系统进行研究,利用李亚普诺夫方法和比较原理,得到这类系统h稳定性的充分条件. This paper is delt with nonlinear perturbed difference systems, and sufficient conditions of h-stability for the systems are obtained by using Lyapunov method and comparison principle.
作者 武萌 尹亮亮
出处 《系统科学与数学》 CSCD 北大核心 2012年第9期1138-1144,共7页 Journal of Systems Science and Mathematical Sciences
基金 河北省教育厅自然科学自等资金项目(Z2012053)
关键词 h稳定性 扰动差分系统 n_∞相似 比较原理 h-stability, pertured difference systems, n^-similarity, comparison principle
  • 相关文献

参考文献9

  • 1Wang P G, Wu M, Wu Y H. Practical stability in terms of two measures for discrete hybrid systems. Nonlinear Anal. Hybrid Systems, 2008, 2: 58-64.
  • 2Wang P G, Wu M. φo-boundedness and practical Co-stability of difference equations. Comput. Ma$h. Appl., 2011, 62: 2863-2870.
  • 3Wang P G, Tian S H, Zhao P. Stability in terms of two measures for difference equations. Appl. Math. Comput., 2006, 182: 1309-1315.
  • 4Medina R, Pinto M. Stability of nonlinear difference equations. Proc. Dynam. Systems Appl., 1996, 2: 397-404.
  • 5Medina R, Pinto M. Variationally stable difference equations. Nonlinear Anal., 1997, 30: 1141- 1152.
  • 6Choi S K, Koo N J, Song S M. h-stability for nonlinear perturbed difference systems. Bull. Korean Math. Soc., 2004, 41: 435-450.
  • 7Choi S K, Koo N J. Variationally stable difference systems by n∞-similarity. J. Math. Anal. Appl., 2000, 249: 553-568.
  • 8Lakshmikantham V, Trigiante D. Theory of Difference Equations with Applications to Numerical Analysis. San Diego: Academic Press, 1998.
  • 9Choi S K, Koo N J, Goo Y H. Variatonally stable difference systems. J. Math. Anal. Appl., 2001, 256: 587-605.

同被引文献6

  • 1武萌,赵新生,贾培佩.时间尺度上脉冲动力系统的实用稳定性[J].数学的实践与认识,2007,37(19):208-212. 被引量:5
  • 2Pinto M. Perturbations of asymptotically stable differential s(stems[J]. Analysis, 1984, 4: 161-175.
  • 3Choi S K, Koo N J, Song S M. h-stability for nonlinear perturbed difference systems[J]. Bull Korean Math Soc, 2004, 41: 435-450.
  • 4Lakshmikantham V, Sivasundaram S, Kaymakcalan B. Dynamic Systems on Measure Chains[M]. Dordrecht: Kluwer Academic Publishers, 1996.
  • 5Choi S K, Cui Y H, Koo N J. Variationally stable dynamic systems on time scales[J]. Advances in Difference Equations, 2012, 129: 1-16.
  • 6王培光,李社军,展正然.微分系统的h稳定性[J].数学的实践与认识,2008,38(10):187-190. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部