期刊文献+

一类带有阻尼项的二阶半线性中立型微分方程解的振动准则 被引量:2

Oscillation Criteria for a Class of Second-order Quasilinear Neutral Differential Equations with Damped
原文传递
导出
摘要 本文研究了一类带有阻尼项的二阶半线性中立型微分方程(r(t)φ(x(t))|(x(t)+p(t)x(σ(t)))'|^(α-1)(x(t)+p(t)x(σ((t)))')'+φ(x(t),x′(t))+q_0(t)|x(T_0(t))|^(α-1)x(T_0(t))+sum from i=1 to n(q_i(t)|x(T_i(t))|^(β_i-1)x(T_i(t))=0)的解的性质,其中n是一个偶数,利用一些新的技巧,我们获得了方程解的振动的一些充分条件,并且给出例子阐述我们所得的结论. A class of second-order quasilinear neutral differential equation with damped (r(t)Ф(x(t))|(x(t)+p(t)x(σ(t)))′|^α-1(x(t)+p(t)x(σ(t)))′)′+φ(x(t),x′(t))+q0(t)x(τ0(t))|^α-1x(τ0(t))+∑i=1^n(t)x(τi(t))|^βi-1x(τi(t))=0 be investigated in this paper, where n is an even number. Using a new method, we obtain some sufficient conditions for the oscillation of the above equation. Example be inserted to illustrate this results.
出处 《应用数学学报》 CSCD 北大核心 2012年第6期972-983,共12页 Acta Mathematicae Applicatae Sinica
基金 国家博士后基金(20110491281) 湖南省科技厅科研项目(2011GK3080) 湖南省教育厅科研项目(11C0404) 南华大学博士启动基金(5-XQD-2006-9) 南华大学学科带头人基金(2007XQD13)资助项目
关键词 振动性 最终正解 二阶 半线性 中立型微分方程 阻尼项 oscillation eventually positive solution second-order quasilinear neutral differential equation damped
  • 相关文献

参考文献12

  • 1Agarwal R P, Shang S L, Yeh C C. Oscillation Criteria for Second-order Retarded Differential Equation. Math. Comput. Model., 1997, 26:1-11.
  • 2Chern J L, Lian W C, Yeh C C. Oscillation Criteria for Second order Half-linear Differentail Equations with Functional Arguments. Publ. Math. Lebrecen., 1996, 48:209-216.
  • 3Dzurina J, Stavroulakis I P. Oscillation Criterion for Second-order Delay Differentail Equation. Appl. Math. Comput., 2003, 140:445-453.
  • 4Kusano T, Naito Y. Oscillation and Nonoscillation Criteria for Second order Quasilinear Differential Equations. Acta. Math. Hungar., 1997, 76:81-99.
  • 5Kusano T, Naito Y, Ogata A. Strong Oscillation and Nonoscillation of Quasilinear Differentail Equa- tions of Second Order. Diff. Eqs. Dyn. Syst., 1994, 2:1-10.
  • 6Kusano T, Naito Y. Nonoscillation Theorems for a Class of Quasilinear Differential Equations of Second Order. J. Math. Anal. Appl., 1995, 189:115-127.
  • 7Mirzov D D. On the Oscillation of Solutions of a System of Differential Equations. Math. Zametki., 1978, 23:401-404.
  • 8Li W T, Zhao P H. Oscillation Theorems for Second-order Nonlinear Differential Equations with Damped Term. Math. Comput. Model, 2004, 39:457-471.
  • 9Sun Y G, Meng F W. Note on the Paper of Dzurina and Stavroulakis. Appl. Math. Comput., 2006, 174:1634-1641.
  • 10Sun Y G, Meng F W. Oscillation of Second-order Delay Differential Equations with Mixed Nonlin- earities. Appl. Math. Comput., 2009, 207:135-139.

同被引文献29

  • 1仉志余,王晓霞,林诗仲,俞元洪.非线性二阶中立型时滞微分方程的振动和非振动准则[J].系统科学与数学,2006,26(3):325-334. 被引量:24
  • 2AGARWAL R P, GRACE S R, REGAN D O. Oscillation Theory for Difference and Functional Differential Equations [M]. New York: Kluwer Academic Publishers, 2000.
  • 3GYORI I, LADAS G. Oscillation Theory for Delay Differential Equations with Applications [M]. Clarendon: Oxford, 1991.
  • 4AGARWAL R P, BOHNER M, LI W T. Nonoscillation and Oscillation: Theory for Functional Differential equations [M]. New York: Marcel Dekker, 2004.
  • 5LI W T, ZHONG C K, FAN X L. Oscillation criteria for second-order half-linear ordinary differential equations with damping [J]. Rocky Mountain J Math, 2003, 33(1): 1-26.
  • 6LI H J, YEH C C. An integral criterion for oscillation of nonlinear differential equations [J]. Math Japonica, 1995, 41: 185-188.
  • 7YANG X J. Oscillation criteria for nonlinear differential equations with damping [J]. Appl Math Comput, 2003, 136: 549-557.
  • 8WU H W, WANG Q R, XU Y T. Oscillation criteria for certain even order nonlinear functional differential equations [J]. Dynamic Systems and Applications, 2004, 13: 129-144.
  • 9MANOJLOVIC J, SHOUKAKU Y, TANIGAWA T, et al. Oscillation criteria for second order differential equa- tions with positive and negative coefficients [J]. Applied Mathematics and Computation, 2006, 181(2): 853-863.
  • 10KAMENEV I V. An integral criterion for oscillation of linear differential equations of second order [ J ]. Math Zametki, 1978, 23 : 249-251.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部