期刊文献+

光线寻优算法的寻优机理分析

The Optimal Mechanism Analysis of Light Ray Optimization
原文传递
导出
摘要 光线寻优算法是一种通过模拟光的传播路径进行寻优的最优化方法.该算法用网格划分可行域,将具有不同折射率的介质填充到各网格中,并将光在此变折射率介质中的传播路径设想成算法的寻优路径.光线寻优算法仅用到目标问题的函数值,结构简单容易实现.根据费马原理,利用变分法进行推导,得出了光具有偏向折射率增大方向,偏离折射率减小方向的自动寻优性质.通过求解9个标准测试函数,并将算法与模拟退火算法,标准粒子群算法进行比较,验证了所得结论以及算法的可行性,有效性,潜在的优越性. Light ray optimization algorithm is an optimal method simulating the propagation path of light. In this algorithm, feasible region is divided by grids in which media with different refracitivities are put. Let the velocity of light rays in each medium be the value of objective function at some gate in these media with the point in the division, and then laws of refraction and reflection a beam of light rays propa- to search the optimal value automatically. Refraction and reflection merely occur on the boundary of grids, and light rays propagate along straight lines in the same grid. Only the function values of objective problem are used in light ray optimization, and it has the advantages of simple structure, few tuning parameters and easy tuning. According to Fermat's principle and variational method, the conclusions were reached that light will get closer to the direction that makes refractivity increase, and get further from the one that makes it decrease. The conclusions of light ray optimization were verified by solving nine standard test functions, and the algo- rithm also was compared with simulated annealing algorithm and standard particle swarm optimization algorithm. Feasibility, validity and potential advantages of the algorithm were verified by large quantity of numerical experiments.
出处 《应用数学学报》 CSCD 北大核心 2012年第6期1018-1029,共12页 Acta Mathematicae Applicatae Sinica
基金 黑龙江省自然科学基金(F200931)资助项目
关键词 光线寻优算法 光线方程 寻优机理 方向导数 曲率 light ray optimization algorithm light rays equations optimal mechanism directional derivative curvature
  • 相关文献

参考文献15

  • 1Liang Y, Leung K S. Genetic Algorithm with Adaptive Elitist-population Strategies for Multimodal Function Optimization. Appl. So Compu., 2011, 11:2017-2034.
  • 2Cai W W, Ewing D J, Ma L. Investigation of Temperature Parallel Simulated Annealing for Optimizing Continuous Functions with Application to Hyperspectral Tomography. Appl. Math. Comput., 2011, 217:5754-5767.
  • 3Thangaraj R, Pant M, Abraham A, Bouvry P. Particle Swarm Optimization: Hybridization Perspec- tives and Experimental Illustrations. Applied Mathematics and Computation, 2011, 217:5208-5226.
  • 4Xiao J, Li L. A Hybrid Ant Colony Optimization for Continuous Domains. Expert Syst. Appl., 2011, doi: 10. 1016/j. eswa .2011. 02. 151.
  • 5李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:884
  • 6Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Kayseri: Erciyes University, 2005.
  • 7Simon D. Biogeography-based Optimization. IEEE T Evolut Comput., 2008, 12(6): 702-713.
  • 8沈继红.基于光学原理的优化方法的研究.哈尔滨工程大学理学院年会,哈尔滨,中国,2007:20-21.
  • 9Shen Jihong, Li Yan. An Optimization Algorithm Based on Optical Principles. Advances in Systems Science and Applications, 2008, 5(1): 1-8.
  • 10Shen Jihong, Li Yah. Light Py Optimization and Its Parameter Analysis. Proceeding of the 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 2009: 918-922.

二级参考文献1

  • 1戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.

共引文献884

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部