期刊文献+

渗透反应格栅去除地下水中铵的化学生物联合柱研究 被引量:1

Laboratory Column Study for Evaluating a Bio-chemical Permeable Reactive Barrier to Remove Ammonium from Groundwater
下载PDF
导出
摘要 通过柱实验对比研究了天然河沙、沈阳沸石、复合介质(释氧材料和沈阳沸石)作为渗透反应格栅填料修复地下水中铵污染的可行性。结果表明:柱实验运行120孔隙体积(Pv)期间,在进水流速为1.8m/d,铵浓度为6.6—10.3mg/L的条件下,实验设计的复合介质填充柱对铵去除率达到99%以上。沸石在吸附去除铵的同时,又可作为微生物生长的载体,使铵进一步通过生物硝化作用被去除,实现沸石的生物再生。释氧材料的加入保证了硝化细菌繁殖所需要的溶解氧条件,水经过释氧层后溶解氧含量由2mg/L增加到6mg/L以上(最高达到22mg/L左右)。实验中通过硝化作用去除的铵量占总去除量的74%左右,实现了沸石吸附联合微生物共同作用去除铵,有助于保证反应柱长期高效地去除地下水中铵污染。 A column study experiment was carried out to evaluate the performance of a fixed bed column made of fiver sand, Shenyang zeolite and the composite medium (02 releasing material and Shenyang zeolite)which was to remove ammonium from the polluted groundwater. The result showed that removal of ammonium of the column was more than 99% and zeolite could play a role of the carrier onto which microorganisms were growing. Thus zeolite as the adsorbent could be biologically regenerated while 02 releasing material acted as a supplier of oxygen enough for microbial nitrification. Actually, the amount ammonium removed by nitrification accounted for 74% of the total. Consequently, composite medium of the column facilitated a joint action - zeolite adsorption and microbial nitrification - to remove ammonium, which could be run in a long-term and high efficient way.
出处 《环境科学与技术》 CAS CSCD 北大核心 2012年第12期1-5,共5页 Environmental Science & Technology
基金 水体污染控制与治理科技重大专项(2009ZX07424-002)
关键词 地下水 复合介质 渗透反应格栅 groundwater ammonium composite medium permeable reactive barrier
  • 相关文献

参考文献17

  • 1O'Hannesin S F,Gillham R W.Long-term performance ofan in situ“iron wall”for remediation of VOCs[J].GroundWater,1998,36(1):164-170.
  • 2Phillips D H,Nooten T V,Bastiaens L,et al.Ten yearperformance evaluation of a field-scale zero-valent ironpermeable reactive barrier installed to remediate trichloroethenecontaminated groundwater[J].Environmental Science&Tech-nology,2010,44(10):3861-3869.
  • 3Gavaskar A R.Design and construction techniques for per-meable reactive barriers[J].Journal of Hazardous Materials,1999,68(1-2):41-71.
  • 4Siljeg M,Foglar L,Kukucka M.The ground water ammo-nium sorption onto Croatian and Serbian clinoptilolite[J].Journal of Hazardous Materials,2010,178(1-3):572-577.
  • 5Nooten T V,Diels L,Bastiaens L.Design of a multifunc-tional permeable reactive barrier for the treatment of landfillleachate contamination:laboratory column evaluation[J].En-vironmental Science&Technology,2008,42(23):8890-8895.
  • 6Patterson B M,Grassi M E,Davis G B,et al.Use ofpolymer mats in series for sequential reactive barrier reme-diation of ammonium-contaminated groundwater:laborato-ry column evaluation[J].Environmental Science&Tech-nology,2002,36(15):3439-3445.
  • 7Yeh C H,Lin C W,Wu C H.A permeable reactive barrierfor the bioremediation of BTEX-contaminated groundwa-ter:Microbial community distribution and removal efficien-cies[J].Journal of Hazardous Materials,2010,178(1-3):74-80.
  • 8Van Nooten T,Diels L,Bastiaens L.Microbially mediatedclinoptilolite regeneration in a multifunctional permeable re-active barrier used to remove ammonium from landfillleachate contamination:laboratory column evaluation[J].Environmental Science&Technology,2010,44(9):3486-3492.
  • 9谢李,刘菲,刘玉龙.释氧渗透反应格栅填料的改进研究[J].环境科学与技术,2010,33(2):44-48. 被引量:13
  • 10李小琴,汪永辉,周建冬.沸石滤料曝气生物滤池的挂膜启动研究[J].环境科学与管理,2008,33(9):91-93. 被引量:9

二级参考文献58

共引文献47

同被引文献147

  • 1Qiong LU,Lai GUI,Robert W. GILLHAM.硝酸根对颗粒状铁降解三氯乙烯的影响(英文)[J].地学前缘,2005,12(U04):176-183. 被引量:4
  • 2Qiu J. China faces up to groundwater crisis[ Jl. Nature News, 2010,466(7 304) : 308.
  • 3Bi E, Liu Y, He J, et al. Screening of emerging volatile organic contaminants in shallow groundwater in east China [ J 1. Groundwa- ter Monitoring & Remediation, 2012, 32( 1 ) :53-58.
  • 4Chen L, Jin S, Liu Y L, et al. Presence of semi-volatile organic contaminants in shallow groundwater of selected regions in China [ J]. Groundwater Monitoring & Remediation, 2014, 34 (4) : 33- 43.
  • 5U.S. EPA. Field Applications of In-Situ Remediation Technolo- gies : Permeable Reactive Barriers [ RZOL 1. Washington DC : U. S. Environmental Protection Agency Office of Solid Waste and E- mergency Response Technology Innovation Office, 2002. http:// www. clu-in, info/download/rtdf/fieldapp_prh, pdf.
  • 6Powell R M, Puls R W, Blowes D W, et al. Permeable Reactive Barrier Technologies for Contaminant Remediation. Office of Re- search and Development, Office of Solid Waste and Emergency Response[ R/OL]. Washington DC: U.S. EPA, 1998. https:// clu-in, org/download/rtdf/prb/reactbar, pdf.
  • 7Interstate Technology and Regulatory Couneil (ITRC). Permeable Reactive Barriers : Lessons Learned/New Directions. PRB-4. Per- meable Reactive Barriers Team[ R/OL]. Washington DC, 2005. https ://www. itrcweb, org.
  • 8Archer W L, Harter M K. Reactivity of carbon tetrachloride with a series of metals[J]. Corrosion, 1978, 34(5): 159-162.
  • 9Archer W L. Aluminum-1, I, 1-trichloroethane. Reactions and inhibition[ J ]. Industrial & Engineering Chemistry Product Re- search and Development, 1982, 21 (4) : 670-672.
  • 10Sweeny K H, Fischer J R. Reductive degradation of halogenated pesticides[ P~. U.S. Patent 3,640,821. 1972-2-8.

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部